quantitykind:MassieuFunction

PredicateObject
rdf:type qudt:QuantityKind
dcterms:description The Massieu function, \(\Psi\), is defined as: \(\Psi = \Psi (X_1, \dots , X_i, Y_{i+1}, \dots , Y_r )\), where for every system with degree of freedom \(r\) one may choose \(r\) variables, e.g. , to define a coordinate system, where \(X\) and \(Y\) are extensive and intensive variables, respectively, and where at least one extensive variable must be within this set in order to define the size of the system. The \((r + 1)^{th}\) variable,\(\Psi\) , is then called the Massieu function.
qudt:hasDimensionVector qkdv:A0E0L2I0M1H-1T-2D0
qudt:informativeReference http://en.wikipedia.org/wiki/Massieu_function
qudt:isoNormativeReference http://www.iso.org/iso/catalogue_detail?csnumber=31890
qudt:latexDefinition \(J = -A/T\), where \(A\) is Helmholtz energy and \(T\) is thermodynamic temperature.
qudt:symbol “J”
qudt:wikidataMatch http://www.wikidata.org/entity/Q3077625
rdfs:isDefinedBy http://qudt.org/3.1.10/vocab/quantitykind
rdfs:label “Massieu Function”@en
rdfs:seeAlso
Generated 2026-01-15T09:03:10.866-05:00