quantitykind:ThermalDiffusivity

URI: http://qudt.org/vocab/quantitykind/ThermalDiffusivity

Type
Description

In heat transfer analysis, thermal diffusivity (usually denoted $\alpha$ but $a$, $\kappa$,$k$, and $D$ are also used) is the thermal conductivity divided by density and specific heat capacity at constant pressure. The formula is: $\alpha = {k \over {\rho c_p}}$, where k is thermal conductivity ($W/(\mu \cdot K)$), $\rho$ is density ($kg/m^{3}$), and $c_p$ is specific heat capacity ($\frac{J}{(kg \cdot K)}$) .The denominator $\rho c_p$, can be considered the volumetric heat capacity ($\frac{J}{(m^{3} \cdot K)}$).

Properties
qudt:latexDefinition
$a = \frac{\lambda}{\rho c_\rho}$, where $\lambda$ is thermal conductivity, $\rho$ is mass density and $c_\rho$ is specific heat capacity at constant pressure.
qudt:latexSymbol
$\alpha$
Annotations
rdfs:comment
Applicable units are those of quantitykind:AreaPerTime
dcterms:description
In heat transfer analysis, thermal diffusivity (usually denoted $\alpha$ but $a$, $\kappa$,$k$, and $D$ are also used) is the thermal conductivity divided by density and specific heat capacity at constant pressure. The formula is: $\alpha = {k \over {\rho c_p}}$, where k is thermal conductivity ($W/(\mu \cdot K)$), $\rho$ is density ($kg/m^{3}$), and $c_p$ is specific heat capacity ($\frac{J}{(kg \cdot K)}$) .The denominator $\rho c_p$, can be considered the volumetric heat capacity ($\frac{J}{(m^{3} \cdot K)}$).
rdfs:label
Thermal Diffusivity(en)
View as:  CSV

Work in progress

RDF/XML
<rdf:RDF
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:j.0="http://qudt.org/schema/qudt/"
    xmlns:j.1="http://purl.org/dc/terms/"
    xmlns:owl="http://www.w3.org/2002/07/owl#"
    xmlns:j.2="http://www.w3.org/2004/02/skos/core#"
    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="http://qudt.org/vocab/quantitykind/ThermalDiffusivity">
    <j.1:description rdf:datatype="http://qudt.org/schema/qudt/LatexString">In heat transfer analysis, thermal diffusivity (usually denoted $\alpha$ but $a$, $\kappa$,$k$, and $D$ are also used) is the thermal conductivity divided by density and specific heat capacity at constant pressure. The formula is: $\alpha = {k \over {\rho c_p}}$, where k is thermal conductivity ($W/(\mu \cdot K)$), $\rho$ is density ($kg/m^{3}$), and $c_p$ is specific heat capacity ($\frac{J}{(kg \cdot K)}$) .The denominator $\rho c_p$, can be considered the volumetric heat capacity ($\frac{J}{(m^{3} \cdot K)}$).</j.1:description>
    <j.0:informativeReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://en.wikipedia.org/wiki/Thermal_diffusivity</j.0:informativeReference>
    <j.0:dbpediaMatch rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://dbpedia.org/resource/Thermal_diffusivity</j.0:dbpediaMatch>
    <j.0:applicableUnit rdf:resource="http://qudt.org/vocab/unit/FT2-PER-SEC"/>
    <j.0:latexDefinition rdf:datatype="http://qudt.org/schema/qudt/LatexString">$a = \frac{\lambda}{\rho   c_\rho}$, where $\lambda$ is thermal conductivity, $\rho$ is mass density and $c_\rho$ is specific heat capacity at constant pressure.</j.0:latexDefinition>
    <j.0:applicableUnit rdf:resource="http://qudt.org/vocab/unit/CentiM2-PER-SEC"/>
    <j.0:applicableUnit rdf:resource="http://qudt.org/vocab/unit/M2-HZ"/>
    <rdfs:label xml:lang="en">Thermal Diffusivity</rdfs:label>
    <j.0:applicableUnit rdf:resource="http://qudt.org/vocab/unit/IN2-PER-SEC"/>
    <rdfs:comment>Applicable units are those of quantitykind:AreaPerTime</rdfs:comment>
    <j.0:applicableUnit rdf:resource="http://qudt.org/vocab/unit/MilliM2-PER-SEC"/>
    <j.0:applicableUnit rdf:resource="http://qudt.org/vocab/unit/FT2-PER-HR"/>
    <j.2:broader rdf:resource="http://qudt.org/vocab/quantitykind/AreaPerTime"/>
    <j.0:hasDimensionVector rdf:resource="http://qudt.org/vocab/dimensionvector/A0E0L2I0M0H0T-1D0"/>
    <rdf:type rdf:resource="http://qudt.org/schema/qudt/QuantityKind"/>
    <j.0:applicableUnit rdf:resource="http://qudt.org/vocab/unit/M2-PER-SEC"/>
    <j.0:symbol>a</j.0:symbol>
    <rdfs:isDefinedBy rdf:resource="http://qudt.org/2.1/vocab/quantitykind"/>
    <j.0:latexSymbol rdf:datatype="http://qudt.org/schema/qudt/LatexString">$\alpha$</j.0:latexSymbol>
  </rdf:Description>
</rdf:RDF>
TURTLE
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://qudt.org/vocab/quantitykind/ThermalDiffusivity>
  rdf:type <http://qudt.org/schema/qudt/QuantityKind> ;
  <http://purl.org/dc/terms/description> "In heat transfer analysis, thermal diffusivity (usually denoted $\\alpha$ but $a$, $\\kappa$,$k$, and $D$ are also used) is the thermal conductivity divided by density and specific heat capacity at constant pressure. The formula is: $\\alpha = {k \\over {\\rho c_p}}$, where k is thermal conductivity ($W/(\\mu \\cdot K)$), $\\rho$ is density ($kg/m^{3}$), and $c_p$ is specific heat capacity ($\\frac{J}{(kg \\cdot K)}$) .The denominator $\\rho c_p$, can be considered the volumetric heat capacity ($\\frac{J}{(m^{3} \\cdot K)}$)."^^<http://qudt.org/schema/qudt/LatexString> ;
  <http://qudt.org/schema/qudt/applicableUnit> <http://qudt.org/vocab/unit/CentiM2-PER-SEC> ;
  <http://qudt.org/schema/qudt/applicableUnit> <http://qudt.org/vocab/unit/FT2-PER-HR> ;
  <http://qudt.org/schema/qudt/applicableUnit> <http://qudt.org/vocab/unit/FT2-PER-SEC> ;
  <http://qudt.org/schema/qudt/applicableUnit> <http://qudt.org/vocab/unit/IN2-PER-SEC> ;
  <http://qudt.org/schema/qudt/applicableUnit> <http://qudt.org/vocab/unit/M2-HZ> ;
  <http://qudt.org/schema/qudt/applicableUnit> <http://qudt.org/vocab/unit/M2-PER-SEC> ;
  <http://qudt.org/schema/qudt/applicableUnit> <http://qudt.org/vocab/unit/MilliM2-PER-SEC> ;
  <http://qudt.org/schema/qudt/dbpediaMatch> "http://dbpedia.org/resource/Thermal_diffusivity"^^xsd:anyURI ;
  <http://qudt.org/schema/qudt/hasDimensionVector> <http://qudt.org/vocab/dimensionvector/A0E0L2I0M0H0T-1D0> ;
  <http://qudt.org/schema/qudt/informativeReference> "http://en.wikipedia.org/wiki/Thermal_diffusivity"^^xsd:anyURI ;
  <http://qudt.org/schema/qudt/latexDefinition> "$a = \\frac{\\lambda}{\\rho   c_\\rho}$, where $\\lambda$ is thermal conductivity, $\\rho$ is mass density and $c_\\rho$ is specific heat capacity at constant pressure."^^<http://qudt.org/schema/qudt/LatexString> ;
  <http://qudt.org/schema/qudt/latexSymbol> "$\\alpha$"^^<http://qudt.org/schema/qudt/LatexString> ;
  <http://qudt.org/schema/qudt/symbol> "a" ;
  rdfs:comment "Applicable units are those of quantitykind:AreaPerTime" ;
  rdfs:isDefinedBy <http://qudt.org/2.1/vocab/quantitykind> ;
  rdfs:label "Thermal Diffusivity"@en ;
  <http://www.w3.org/2004/02/skos/core#broader> <http://qudt.org/vocab/quantitykind/AreaPerTime> ;
.
JSON
{"resource":"Thermal Diffusivity" 
 ,"qname":"quantitykind:ThermalDiffusivity" 
 ,"uri":"http:\/\/qudt.org\/vocab\/quantitykind\/ThermalDiffusivity" 
 ,"properties":["applicable unit":"unit:CentiM2-PER-SEC" 
    ,"applicable unit":"unit:FT2-PER-HR" 
    ,"applicable unit":"unit:FT2-PER-SEC" 
    ,"applicable unit":"unit:IN2-PER-SEC" 
    ,"applicable unit":"unit:M2-HZ" 
    ,"applicable unit":"unit:M2-PER-SEC" 
    ,"applicable unit":"unit:MilliM2-PER-SEC" 
    ,"comment":"Applicable units are those of quantitykind:AreaPerTime" 
    ,"dbpedia match":"http:\/\/dbpedia.org\/resource\/Thermal_diffusivity" 
    ,"description":"In heat transfer analysis, thermal diffusivity (usually denoted $\\alpha$ but $a$, $\\kappa$,$k$, and $D$ are also used) is the thermal conductivity divided by density and specific heat capacity at constant pressure. The formula is: $\\alpha = {k \\over {\\rho c_p}}$, where k is thermal conductivity ($W\/(\\mu \\cdot K)$), $\\rho$ is density ($kg\/m^{3}$), and $c_p$ is specific heat capacity ($\\frac{J}{(kg \\cdot K)}$) .The denominator $\\rho c_p$, can be considered the volumetric heat capacity ($\\frac{J}{(m^{3} \\cdot K)}$)." 
    ,"has broader":"quantitykind:AreaPerTime" 
    ,"has dimension vector":"dimension:A0E0L2I0M0H0T-1D0" 
    ,"informative reference":"http:\/\/en.wikipedia.org\/wiki\/Thermal_diffusivity" 
    ,"isDefinedBy":"&lt;http:\/\/qudt.org\/2.1\/vocab\/quantitykind&gt;" 
    ,"label":"Thermal Diffusivity" 
    ,"latex definition":"$a = \\frac{\\lambda}{\\rho   c_\\rho}$, where $\\lambda$ is thermal conductivity, $\\rho$ is mass density and $c_\\rho$ is specific heat capacity at constant pressure." 
    ,"latex symbol":"$\\alpha$" 
    ,"symbol":"a" 
    ,"type":"qudt:QuantityKind" 
    ]}
JSON-LD
{
  "@id" : "http://qudt.org/vocab/quantitykind/ThermalDiffusivity",
  "@type" : "http://qudt.org/schema/qudt/QuantityKind",
  "description" : "In heat transfer analysis, thermal diffusivity (usually denoted $\\alpha$ but $a$, $\\kappa$,$k$, and $D$ are also used) is the thermal conductivity divided by density and specific heat capacity at constant pressure. The formula is: $\\alpha = {k \\over {\\rho c_p}}$, where k is thermal conductivity ($W/(\\mu \\cdot K)$), $\\rho$ is density ($kg/m^{3}$), and $c_p$ is specific heat capacity ($\\frac{J}{(kg \\cdot K)}$) .The denominator $\\rho c_p$, can be considered the volumetric heat capacity ($\\frac{J}{(m^{3} \\cdot K)}$).",
  "applicableUnit" : [ "http://qudt.org/vocab/unit/FT2-PER-SEC", "http://qudt.org/vocab/unit/CentiM2-PER-SEC", "http://qudt.org/vocab/unit/M2-HZ", "http://qudt.org/vocab/unit/IN2-PER-SEC", "http://qudt.org/vocab/unit/MilliM2-PER-SEC", "http://qudt.org/vocab/unit/FT2-PER-HR", "http://qudt.org/vocab/unit/M2-PER-SEC" ],
  "dbpediaMatch" : "http://dbpedia.org/resource/Thermal_diffusivity",
  "hasDimensionVector" : "http://qudt.org/vocab/dimensionvector/A0E0L2I0M0H0T-1D0",
  "informativeReference" : "http://en.wikipedia.org/wiki/Thermal_diffusivity",
  "latexDefinition" : "$a = \\frac{\\lambda}{\\rho   c_\\rho}$, where $\\lambda$ is thermal conductivity, $\\rho$ is mass density and $c_\\rho$ is specific heat capacity at constant pressure.",
  "latexSymbol" : "$\\alpha$",
  "symbol" : "a",
  "comment" : "Applicable units are those of quantitykind:AreaPerTime",
  "isDefinedBy" : "http://qudt.org/2.1/vocab/quantitykind",
  "label" : {
    "@language" : "en",
    "@value" : "Thermal Diffusivity"
  },
  "broader" : "http://qudt.org/vocab/quantitykind/AreaPerTime",
  "@context" : {
    "description" : {
      "@id" : "http://purl.org/dc/terms/description",
      "@type" : "http://qudt.org/schema/qudt/LatexString"
    },
    "informativeReference" : {
      "@id" : "http://qudt.org/schema/qudt/informativeReference",
      "@type" : "http://www.w3.org/2001/XMLSchema#anyURI"
    },
    "dbpediaMatch" : {
      "@id" : "http://qudt.org/schema/qudt/dbpediaMatch",
      "@type" : "http://www.w3.org/2001/XMLSchema#anyURI"
    },
    "applicableUnit" : {
      "@id" : "http://qudt.org/schema/qudt/applicableUnit",
      "@type" : "@id"
    },
    "latexDefinition" : {
      "@id" : "http://qudt.org/schema/qudt/latexDefinition",
      "@type" : "http://qudt.org/schema/qudt/LatexString"
    },
    "label" : {
      "@id" : "http://www.w3.org/2000/01/rdf-schema#label"
    },
    "comment" : {
      "@id" : "http://www.w3.org/2000/01/rdf-schema#comment"
    },
    "broader" : {
      "@id" : "http://www.w3.org/2004/02/skos/core#broader",
      "@type" : "@id"
    },
    "hasDimensionVector" : {
      "@id" : "http://qudt.org/schema/qudt/hasDimensionVector",
      "@type" : "@id"
    },
    "symbol" : {
      "@id" : "http://qudt.org/schema/qudt/symbol"
    },
    "isDefinedBy" : {
      "@id" : "http://www.w3.org/2000/01/rdf-schema#isDefinedBy",
      "@type" : "@id"
    },
    "latexSymbol" : {
      "@id" : "http://qudt.org/schema/qudt/latexSymbol",
      "@type" : "http://qudt.org/schema/qudt/LatexString"
    },
    "rdf" : "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
    "owl" : "http://www.w3.org/2002/07/owl#",
    "xsd" : "http://www.w3.org/2001/XMLSchema#",
    "rdfs" : "http://www.w3.org/2000/01/rdf-schema#"
  }
}

Generated 2024-11-15T17:19:38.639-05:00 by lmdoc version 1.1 with  TopBraid SPARQL Web Pages (SWP)