View as:
CSV
RDF/XML
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:j.0="http://qudt.org/schema/qudt/"
xmlns:j.1="http://purl.org/dc/terms/"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="http://qudt.org/vocab/unit/PER-PlanckMass2">
<j.0:dbpediaMatch rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://dbpedia.org/resource/Planck_mass</j.0:dbpediaMatch>
<j.0:conversionMultiplier rdf:datatype="http://www.w3.org/2001/XMLSchema#decimal">2111089000000000.0</j.0:conversionMultiplier>
<j.1:description rdf:datatype="http://qudt.org/schema/qudt/LatexString">In physics, the Planck mass, denoted by $m_P$, is the unit of mass in the system of natural units known as Planck units. It is defined so that $\approx 1.2209 \times 10 GeV/c_0 = 2.17651(13) \times 10 kg$, (or $21.7651 \mu g$), where $c_0$ is the speed of light in a vacuum, $G$ is the gravitational constant, and $\hbar$ is the reduced Planck constant. Particle physicists and cosmologists often use the reduced Planck mass, which is $\approx 4.341 \times 10 kg = 2.435 \times 10 GeV/c$. The added factor of $1/{\sqrt{8\pi}}$ simplifies a number of equations in general relativity. Quantum effects are typified by the magnitude of Planck's constant.</j.1:description>
<j.0:informativeReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://en.wikipedia.org/wiki/Planck_mass?oldid=493648632</j.0:informativeReference>
<j.0:hasDimensionVector rdf:resource="http://qudt.org/vocab/dimensionvector/A0E0L0I0M-2H0T0D0"/>
<j.0:applicableSystem rdf:resource="http://qudt.org/vocab/sou/PLANCK"/>
<j.0:latexDefinition rdf:datatype="http://qudt.org/schema/qudt/LatexString">$m_P = \sqrt{\frac{ \hbar c^3}{G}} \approx 1.2209 \times 10^{19} GeV/c^2 = 2.17651(13) \times 10^{-8}$, where $c$ is the speed of light in a vacuum, $\hbar$ is the reduced Planck's constant, and $G$ is the gravitational constant. The two digits enclosed by parentheses are the estimated standard error associated with the reported numerical value.</j.0:latexDefinition>
<rdfs:isDefinedBy rdf:resource="http://qudt.org/2.1/vocab/unit"/>
<rdfs:label xml:lang="en">Inverse Square Planck Mass</rdfs:label>
<j.0:hasQuantityKind rdf:resource="http://qudt.org/vocab/quantitykind/InverseMass_Squared"/>
<j.0:conversionMultiplierSN rdf:datatype="http://www.w3.org/2001/XMLSchema#double">2.111089E15</j.0:conversionMultiplierSN>
<j.0:symbol>/mₚ²</j.0:symbol>
<j.0:informativeReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://en.wikipedia.org/wiki/Planck_units</j.0:informativeReference>
<rdf:type rdf:resource="http://qudt.org/schema/qudt/Unit"/>
</rdf:Description>
</rdf:RDF>
TURTLE
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
<http://qudt.org/vocab/unit/PER-PlanckMass2>
rdf:type <http://qudt.org/schema/qudt/Unit> ;
<http://purl.org/dc/terms/description> "In physics, the Planck mass, denoted by $m_P$, is the unit of mass in the system of natural units known as Planck units. It is defined so that $\\approx 1.2209 \\times 10 GeV/c_0 = 2.17651(13) \\times 10 kg$, (or $21.7651 \\mu g$), where $c_0$ is the speed of light in a vacuum, $G$ is the gravitational constant, and $\\hbar$ is the reduced Planck constant. Particle physicists and cosmologists often use the reduced Planck mass, which is $\\approx 4.341 \\times 10 kg = 2.435 \\times 10 GeV/c$. The added factor of $1/{\\sqrt{8\\pi}}$ simplifies a number of equations in general relativity. Quantum effects are typified by the magnitude of Planck's constant."^^<http://qudt.org/schema/qudt/LatexString> ;
<http://qudt.org/schema/qudt/applicableSystem> <http://qudt.org/vocab/sou/PLANCK> ;
<http://qudt.org/schema/qudt/conversionMultiplier> 2111089000000000.0 ;
<http://qudt.org/schema/qudt/conversionMultiplierSN> 2.111089E15 ;
<http://qudt.org/schema/qudt/dbpediaMatch> "http://dbpedia.org/resource/Planck_mass"^^xsd:anyURI ;
<http://qudt.org/schema/qudt/hasDimensionVector> <http://qudt.org/vocab/dimensionvector/A0E0L0I0M-2H0T0D0> ;
<http://qudt.org/schema/qudt/hasQuantityKind> <http://qudt.org/vocab/quantitykind/InverseMass_Squared> ;
<http://qudt.org/schema/qudt/informativeReference> "http://en.wikipedia.org/wiki/Planck_mass?oldid=493648632"^^xsd:anyURI ;
<http://qudt.org/schema/qudt/informativeReference> "https://en.wikipedia.org/wiki/Planck_units"^^xsd:anyURI ;
<http://qudt.org/schema/qudt/latexDefinition> "$m_P = \\sqrt{\\frac{ \\hbar c^3}{G}} \\approx 1.2209 \\times 10^{19} GeV/c^2 = 2.17651(13) \\times 10^{-8}$, where $c$ is the speed of light in a vacuum, $\\hbar$ is the reduced Planck's constant, and $G$ is the gravitational constant. The two digits enclosed by parentheses are the estimated standard error associated with the reported numerical value."^^<http://qudt.org/schema/qudt/LatexString> ;
<http://qudt.org/schema/qudt/symbol> "/mₚ²" ;
rdfs:isDefinedBy <http://qudt.org/2.1/vocab/unit> ;
rdfs:label "Inverse Square Planck Mass"@en ;
.
JSON
{"resource":"Inverse Square Planck Mass"
,"qname":"unit:PER-PlanckMass2"
,"uri":"http:\/\/qudt.org\/vocab\/unit\/PER-PlanckMass2"
,"properties":["applicable system":"sou:PLANCK"
,"conversion multiplier":"2111089000000000.0"
,"conversion multiplier scientific":"2.111089E15"
,"dbpedia match":"http:\/\/dbpedia.org\/resource\/Planck_mass"
,"description":"In physics, the Planck mass, denoted by $m_P$, is the unit of mass in the system of natural units known as Planck units. It is defined so that $\\approx 1.2209 \\times 10 GeV\/c_0 = 2.17651(13) \\times 10 kg$, (or $21.7651 \\mu g$), where $c_0$ is the speed of light in a vacuum, $G$ is the gravitational constant, and $\\hbar$ is the reduced Planck constant. Particle physicists and cosmologists often use the reduced Planck mass, which is $\\approx 4.341 \\times 10 kg = 2.435 \\times 10 GeV\/c$. The added factor of $1\/{\\sqrt{8\\pi}}$ simplifies a number of equations in general relativity. Quantum effects are typified by the magnitude of Planck's constant."
,"has dimension vector":"dimension:A0E0L0I0M-2H0T0D0"
,"has quantity kind":"quantitykind:InverseMass_Squared"
,"informative reference":"http:\/\/en.wikipedia.org\/wiki\/Planck_mass?oldid=493648632"
,"informative reference":"https:\/\/en.wikipedia.org\/wiki\/Planck_units"
,"isDefinedBy":"<http:\/\/qudt.org\/2.1\/vocab\/unit>"
,"label":"Inverse Square Planck Mass"
,"latex definition":"$m_P = \\sqrt{\\frac{ \\hbar c^3}{G}} \\approx 1.2209 \\times 10^{19} GeV\/c^2 = 2.17651(13) \\times 10^{-8}$, where $c$ is the speed of light in a vacuum, $\\hbar$ is the reduced Planck's constant, and $G$ is the gravitational constant. The two digits enclosed by parentheses are the estimated standard error associated with the reported numerical value."
,"symbol":"\/m\u209A²"
,"type":"qudt:Unit"
]}
JSON-LD
{
"@id" : "http://qudt.org/vocab/unit/PER-PlanckMass2",
"@type" : "http://qudt.org/schema/qudt/Unit",
"description" : "In physics, the Planck mass, denoted by $m_P$, is the unit of mass in the system of natural units known as Planck units. It is defined so that $\\approx 1.2209 \\times 10 GeV/c_0 = 2.17651(13) \\times 10 kg$, (or $21.7651 \\mu g$), where $c_0$ is the speed of light in a vacuum, $G$ is the gravitational constant, and $\\hbar$ is the reduced Planck constant. Particle physicists and cosmologists often use the reduced Planck mass, which is $\\approx 4.341 \\times 10 kg = 2.435 \\times 10 GeV/c$. The added factor of $1/{\\sqrt{8\\pi}}$ simplifies a number of equations in general relativity. Quantum effects are typified by the magnitude of Planck's constant.",
"applicableSystem" : "http://qudt.org/vocab/sou/PLANCK",
"conversionMultiplier" : "2111089000000000.0",
"conversionMultiplier:SN" : 2.111089E15,
"dbpediaMatch" : "http://dbpedia.org/resource/Planck_mass",
"hasDimensionVector" : "http://qudt.org/vocab/dimensionvector/A0E0L0I0M-2H0T0D0",
"hasQuantityKind" : "http://qudt.org/vocab/quantitykind/InverseMass_Squared",
"informativeReference" : [ "http://en.wikipedia.org/wiki/Planck_mass?oldid=493648632", "https://en.wikipedia.org/wiki/Planck_units" ],
"latexDefinition" : "$m_P = \\sqrt{\\frac{ \\hbar c^3}{G}} \\approx 1.2209 \\times 10^{19} GeV/c^2 = 2.17651(13) \\times 10^{-8}$, where $c$ is the speed of light in a vacuum, $\\hbar$ is the reduced Planck's constant, and $G$ is the gravitational constant. The two digits enclosed by parentheses are the estimated standard error associated with the reported numerical value.",
"symbol" : "/mₚ²",
"isDefinedBy" : "http://qudt.org/2.1/vocab/unit",
"label" : {
"@language" : "en",
"@value" : "Inverse Square Planck Mass"
},
"@context" : {
"dbpediaMatch" : {
"@id" : "http://qudt.org/schema/qudt/dbpediaMatch",
"@type" : "http://www.w3.org/2001/XMLSchema#anyURI"
},
"conversionMultiplier" : {
"@id" : "http://qudt.org/schema/qudt/conversionMultiplier",
"@type" : "http://www.w3.org/2001/XMLSchema#decimal"
},
"description" : {
"@id" : "http://purl.org/dc/terms/description",
"@type" : "http://qudt.org/schema/qudt/LatexString"
},
"informativeReference" : {
"@id" : "http://qudt.org/schema/qudt/informativeReference",
"@type" : "http://www.w3.org/2001/XMLSchema#anyURI"
},
"hasDimensionVector" : {
"@id" : "http://qudt.org/schema/qudt/hasDimensionVector",
"@type" : "@id"
},
"applicableSystem" : {
"@id" : "http://qudt.org/schema/qudt/applicableSystem",
"@type" : "@id"
},
"latexDefinition" : {
"@id" : "http://qudt.org/schema/qudt/latexDefinition",
"@type" : "http://qudt.org/schema/qudt/LatexString"
},
"isDefinedBy" : {
"@id" : "http://www.w3.org/2000/01/rdf-schema#isDefinedBy",
"@type" : "@id"
},
"label" : {
"@id" : "http://www.w3.org/2000/01/rdf-schema#label"
},
"hasQuantityKind" : {
"@id" : "http://qudt.org/schema/qudt/hasQuantityKind",
"@type" : "@id"
},
"conversionMultiplierSN" : {
"@id" : "http://qudt.org/schema/qudt/conversionMultiplierSN",
"@type" : "http://www.w3.org/2001/XMLSchema#double"
},
"symbol" : {
"@id" : "http://qudt.org/schema/qudt/symbol"
},
"rdf" : "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
"owl" : "http://www.w3.org/2002/07/owl#",
"xsd" : "http://www.w3.org/2001/XMLSchema#",
"rdfs" : "http://www.w3.org/2000/01/rdf-schema#"
}
}