qudt:QuantityKindDimensionVector

URI: http://qudt.org/schema/qudt/QuantityKindDimensionVector

Type
Description

$\text{Quantity Kind Dimension Vector}$ describes the dimensionality of a quantity kind in the context of a system of units. In the SI system of units, the dimensions of a quantity kind are expressed as a product of the basic physical dimensions mass ($M$), length ($L$), time ($T$) current ($I$), amount of substance ($N$), luminous intensity ($J$) and absolute temperature ($\theta$) as $dim \, Q = L^{\alpha} \, M^{\beta} \, T^{\gamma} \, I ^{\delta} \, \theta ^{\epsilon} \, N^{\eta} \, J ^{\nu}$. The rational powers of the dimensional exponents, $\alpha, \, \beta, \, \gamma, \, \delta, \, \epsilon, \, \eta, \, \nu$, are positive, negative, or zero. For example, the dimension of the physical quantity kind $\it{speed}$ is $\boxed{length/time}$, $L/T$ or $LT^{-1}$, and the dimension of the physical quantity kind force is $\boxed{mass \times acceleration}$ or $\boxed{mass \times (length/time)/time}$, $ML/T^2$ or $MLT^{-2}$ respectively.

Properties
rdfs:subClassOf
`dimension exponent for amount of substance` exactly 1
`dimension exponent for electric current` exactly 1
`dimension exponent for length` exactly 1
`dimension exponent for luminous intensity` exactly 1
`dimension exponent for mass` exactly 1
`dimension exponent for thermodynamic temperature` exactly 1
`dimension exponent for time` exactly 1
`dimensionless exponent` exactly 1
`has reference quantity kind` only `Quantity Kind`
`latex definition` max 1
`latex symbol` min 0
Annotations
rdfs:comment

A Quantity Kind Dimension Vector describes the dimensionality of a quantity kind in the context of a system of units. In the SI system of units, the dimensions of a quantity kind are expressed as a product of the basic physical dimensions mass ($M$), length ($L$), time ($T$) current ($I$), amount of substance ($N$), luminous intensity ($J$) and absolute temperature ($\theta$) as $dim \, Q = L^{\alpha} \, M^{\beta} \, T^{\gamma} \, I ^{\delta} \, \theta ^{\epsilon} \, N^{\eta} \, J ^{\nu}$.

The rational powers of the dimensional exponents, $\alpha, \, \beta, \, \gamma, \, \delta, \, \epsilon, \, \eta, \, \nu$, are positive, negative, or zero.

For example, the dimension of the physical quantity kind $\it{speed}$ is $\boxed{length/time}$, $L/T$ or $LT^{-1}$, and the dimension of the physical quantity kind force is $\boxed{mass \times acceleration}$ or $\boxed{mass \times (length/time)/time}$, $ML/T^2$ or $MLT^{-2}$ respectively.

dcterms:description
$\text{Quantity Kind Dimension Vector}$ describes the dimensionality of a quantity kind in the context of a system of units. In the SI system of units, the dimensions of a quantity kind are expressed as a product of the basic physical dimensions mass ($M$), length ($L$), time ($T$) current ($I$), amount of substance ($N$), luminous intensity ($J$) and absolute temperature ($\theta$) as $dim \, Q = L^{\alpha} \, M^{\beta} \, T^{\gamma} \, I ^{\delta} \, \theta ^{\epsilon} \, N^{\eta} \, J ^{\nu}$. The rational powers of the dimensional exponents, $\alpha, \, \beta, \, \gamma, \, \delta, \, \epsilon, \, \eta, \, \nu$, are positive, negative, or zero. For example, the dimension of the physical quantity kind $\it{speed}$ is $\boxed{length/time}$, $L/T$ or $LT^{-1}$, and the dimension of the physical quantity kind force is $\boxed{mass \times acceleration}$ or $\boxed{mass \times (length/time)/time}$, $ML/T^2$ or $MLT^{-2}$ respectively.
rdfs:label
Quantity Kind Dimension Vector
View as:  CSV

Work in progress

RDF/XML
<rdf:RDF
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:j.0="http://qudt.org/schema/qudt/"
    xmlns:j.1="http://purl.org/dc/terms/"
    xmlns:owl="http://www.w3.org/2002/07/owl#"
    xmlns:j.2="http://www.w3.org/ns/shacl#"
    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="http://qudt.org/schema/qudt/QuantityKindDimensionVector">
    <j.2:property rdf:resource="http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForAmountOfSubstance"/>
    <rdfs:subClassOf rdf:resource="http://qudt.org/schema/qudt/Concept"/>
    <j.0:informativeReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://en.wikipedia.org/wiki/Dimensional_analysis</j.0:informativeReference>
    <rdfs:subClassOf rdf:nodeID="A0"/>
    <rdfs:subClassOf rdf:nodeID="A1"/>
    <j.2:property rdf:resource="http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForThermodynamicTemperature"/>
    <j.1:description rdf:datatype="http://qudt.org/schema/qudt/LatexString">
 $\text{Quantity Kind Dimension Vector}$ describes the dimensionality of a quantity kind in the context of a system of units. 
 In the SI system of units, the dimensions of a quantity kind are expressed as a product of the basic
  physical dimensions mass ($M$), length ($L$), time ($T$) current ($I$), amount of substance ($N$),
   luminous intensity ($J$) and absolute temperature 
   ($\theta$) as $dim \, Q = L^{\alpha} \, M^{\beta} \, T^{\gamma} \, I ^{\delta} \, \theta ^{\epsilon} \, N^{\eta} \, J ^{\nu}$.


  The rational powers of the dimensional exponents, $\alpha, \, \beta, \, \gamma, \, \delta, \, \epsilon, \, \eta, \, \nu$, are positive, negative, or zero.

  For example, the dimension of the physical quantity kind $\it{speed}$ is $\boxed{length/time}$, $L/T$ or $LT^{-1}$,
   and the dimension of the physical quantity kind force is $\boxed{mass \times acceleration}$ or $\boxed{mass \times (length/time)/time}$, $ML/T^2$ or $MLT^{-2}$ respectively.
 </j.1:description>
    <rdfs:subClassOf rdf:nodeID="A2"/>
    <rdfs:subClassOf rdf:nodeID="A3"/>
    <rdfs:subClassOf rdf:nodeID="A4"/>
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>
    <j.2:property rdf:resource="http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForElectricCurrent"/>
    <rdfs:subClassOf rdf:nodeID="A5"/>
    <j.2:property rdf:resource="http://qudt.org/schema/qudt/QuantityKindDimensionVector-latexDefinition"/>
    <j.0:informativeReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://web.mit.edu/2.25/www/pdf/DA_unified.pdf</j.0:informativeReference>
    <rdf:type rdf:resource="http://www.w3.org/ns/shacl#NodeShape"/>
    <rdfs:label>Quantity Kind Dimension Vector</rdfs:label>
    <j.2:property rdf:resource="http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForMass"/>
    <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
    <rdfs:subClassOf rdf:nodeID="A6"/>
    <rdfs:subClassOf rdf:nodeID="A7"/>
    <rdfs:isDefinedBy rdf:resource="http://qudt.org/2.1/schema/shacl/qudt"/>
    <j.2:property rdf:resource="http://qudt.org/schema/qudt/QuantityKindDimensionVector-hasReferenceQuantityKind"/>
    <rdfs:comment rdf:datatype="http://www.w3.org/1999/02/22-rdf-syntax-ns#HTML">&lt;p class="lm-para"&gt;A  &lt;em&gt;Quantity Kind Dimension Vector&lt;/em&gt; describes the dimensionality of a quantity kind in the context of a system of units. In the SI system of units, the dimensions of a quantity kind are expressed as a product of the basic physical dimensions mass ($M$), length ($L$), time ($T$) current ($I$), amount of substance ($N$), luminous intensity ($J$) and absolute temperature ($\theta$) as $dim \, Q = L^{\alpha} \, M^{\beta} \, T^{\gamma} \, I ^{\delta} \, \theta ^{\epsilon} \, N^{\eta} \, J ^{\nu}$.&lt;/p&gt;

&lt;p class="lm-para"&gt;The rational powers of the dimensional exponents, $\alpha, \, \beta, \, \gamma, \, \delta, \, \epsilon, \, \eta, \, \nu$, are positive, negative, or zero.&lt;/p&gt;

&lt;p class="lm-para"&gt;For example, the dimension of the physical quantity kind $\it{speed}$ is $\boxed{length/time}$, $L/T$ or $LT^{-1}$, and the dimension of the physical quantity kind force is $\boxed{mass \times acceleration}$ or $\boxed{mass \times (length/time)/time}$, $ML/T^2$ or $MLT^{-2}$ respectively.&lt;/p&gt;</rdfs:comment>
    <j.2:property rdf:resource="http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForTime"/>
    <rdfs:subClassOf rdf:nodeID="A8"/>
    <rdfs:isDefinedBy rdf:resource="http://qudt.org/2.1/schema/qudt"/>
    <rdfs:subClassOf rdf:nodeID="A9"/>
    <rdfs:subClassOf rdf:nodeID="A10"/>
    <j.2:property rdf:resource="http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForLuminousIntensity"/>
    <j.2:property rdf:resource="http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionlessExponent"/>
    <j.2:property rdf:resource="http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForLength"/>
    <j.2:property rdf:resource="http://qudt.org/schema/qudt/QuantityKindDimensionVector-latexSymbol"/>
  </rdf:Description>
</rdf:RDF>
TURTLE
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://qudt.org/schema/qudt/QuantityKindDimensionVector>
  rdf:type rdfs:Class ;
  rdf:type owl:Class ;
  rdf:type <http://www.w3.org/ns/shacl#NodeShape> ;
  <http://purl.org/dc/terms/description> """
 $\\text{Quantity Kind Dimension Vector}$ describes the dimensionality of a quantity kind in the context of a system of units. 
 In the SI system of units, the dimensions of a quantity kind are expressed as a product of the basic
  physical dimensions mass ($M$), length ($L$), time ($T$) current ($I$), amount of substance ($N$),
   luminous intensity ($J$) and absolute temperature 
   ($\\theta$) as $dim \\, Q = L^{\\alpha} \\, M^{\\beta} \\, T^{\\gamma} \\, I ^{\\delta} \\, \\theta ^{\\epsilon} \\, N^{\\eta} \\, J ^{\\nu}$.


  The rational powers of the dimensional exponents, $\\alpha, \\, \\beta, \\, \\gamma, \\, \\delta, \\, \\epsilon, \\, \\eta, \\, \\nu$, are positive, negative, or zero.

  For example, the dimension of the physical quantity kind $\\it{speed}$ is $\\boxed{length/time}$, $L/T$ or $LT^{-1}$,
   and the dimension of the physical quantity kind force is $\\boxed{mass \\times acceleration}$ or $\\boxed{mass \\times (length/time)/time}$, $ML/T^2$ or $MLT^{-2}$ respectively.
 """^^<http://qudt.org/schema/qudt/LatexString> ;
  <http://qudt.org/schema/qudt/informativeReference> "http://en.wikipedia.org/wiki/Dimensional_analysis"^^xsd:anyURI ;
  <http://qudt.org/schema/qudt/informativeReference> "http://web.mit.edu/2.25/www/pdf/DA_unified.pdf"^^xsd:anyURI ;
  rdfs:comment """<p class=\"lm-para\">A  <em>Quantity Kind Dimension Vector</em> describes the dimensionality of a quantity kind in the context of a system of units. In the SI system of units, the dimensions of a quantity kind are expressed as a product of the basic physical dimensions mass ($M$), length ($L$), time ($T$) current ($I$), amount of substance ($N$), luminous intensity ($J$) and absolute temperature ($\\theta$) as $dim \\, Q = L^{\\alpha} \\, M^{\\beta} \\, T^{\\gamma} \\, I ^{\\delta} \\, \\theta ^{\\epsilon} \\, N^{\\eta} \\, J ^{\\nu}$.</p>

<p class=\"lm-para\">The rational powers of the dimensional exponents, $\\alpha, \\, \\beta, \\, \\gamma, \\, \\delta, \\, \\epsilon, \\, \\eta, \\, \\nu$, are positive, negative, or zero.</p>

<p class=\"lm-para\">For example, the dimension of the physical quantity kind $\\it{speed}$ is $\\boxed{length/time}$, $L/T$ or $LT^{-1}$, and the dimension of the physical quantity kind force is $\\boxed{mass \\times acceleration}$ or $\\boxed{mass \\times (length/time)/time}$, $ML/T^2$ or $MLT^{-2}$ respectively.</p>"""^^rdf:HTML ;
  rdfs:isDefinedBy <http://qudt.org/2.1/schema/qudt> ;
  rdfs:isDefinedBy <http://qudt.org/2.1/schema/shacl/qudt> ;
  rdfs:label "Quantity Kind Dimension Vector" ;
  rdfs:subClassOf <http://qudt.org/schema/qudt/Concept> ;
  rdfs:subClassOf [] ;
  rdfs:subClassOf [] ;
  rdfs:subClassOf [] ;
  rdfs:subClassOf [] ;
  rdfs:subClassOf [] ;
  rdfs:subClassOf [] ;
  rdfs:subClassOf [] ;
  rdfs:subClassOf [] ;
  rdfs:subClassOf [] ;
  rdfs:subClassOf [] ;
  rdfs:subClassOf [] ;
  <http://www.w3.org/ns/shacl#property> <http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForAmountOfSubstance> ;
  <http://www.w3.org/ns/shacl#property> <http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForElectricCurrent> ;
  <http://www.w3.org/ns/shacl#property> <http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForLength> ;
  <http://www.w3.org/ns/shacl#property> <http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForLuminousIntensity> ;
  <http://www.w3.org/ns/shacl#property> <http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForMass> ;
  <http://www.w3.org/ns/shacl#property> <http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForThermodynamicTemperature> ;
  <http://www.w3.org/ns/shacl#property> <http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForTime> ;
  <http://www.w3.org/ns/shacl#property> <http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionlessExponent> ;
  <http://www.w3.org/ns/shacl#property> <http://qudt.org/schema/qudt/QuantityKindDimensionVector-hasReferenceQuantityKind> ;
  <http://www.w3.org/ns/shacl#property> <http://qudt.org/schema/qudt/QuantityKindDimensionVector-latexDefinition> ;
  <http://www.w3.org/ns/shacl#property> <http://qudt.org/schema/qudt/QuantityKindDimensionVector-latexSymbol> ;
.
JSON
{"resource":"Quantity Kind Dimension Vector" 
 ,"qname":"qudt:QuantityKindDimensionVector" 
 ,"uri":"http:\/\/qudt.org\/schema\/qudt\/QuantityKindDimensionVector" 
 ,"properties":["comment":"&lt;p class=\"lm-para\"&gt;A  &lt;em&gt;Quantity Kind Dimension Vector&lt;\/em&gt; describes the dimensionality of a quantity kind in the context of a system of units. In the SI system of units, the dimensions of a quantity kind are expressed as a product of the basic physical dimensions mass ($M$), length ($L$), time ($T$) current ($I$), amount of substance ($N$), luminous intensity ($J$) and absolute temperature ($\\theta$) as $dim \\, Q = L^{\\alpha} \\, M^{\\beta} \\, T^{\\gamma} \\, I ^{\\delta} \\, \\theta ^{\\epsilon} \\, N^{\\eta} \\, J ^{\\nu}$.&lt;\/p&gt;\n\n&lt;p class=\"lm-para\"&gt;The rational powers of the dimensional exponents, $\\alpha, \\, \\beta, \\, \\gamma, \\, \\delta, \\, \\epsilon, \\, \\eta, \\, \\nu$, are positive, negative, or zero.&lt;\/p&gt;\n\n&lt;p class=\"lm-para\"&gt;For example, the dimension of the physical quantity kind $\\it{speed}$ is $\\boxed{length\/time}$, $L\/T$ or $LT^{-1}$, and the dimension of the physical quantity kind force is $\\boxed{mass \\times acceleration}$ or $\\boxed{mass \\times (length\/time)\/time}$, $ML\/T^2$ or $MLT^{-2}$ respectively.&lt;\/p&gt;" 
    ,"description":"\n $\\text{Quantity Kind Dimension Vector}$ describes the dimensionality of a quantity kind in the context of a system of units. \n In the SI system of units, the dimensions of a quantity kind are expressed as a product of the basic\n  physical dimensions mass ($M$), length ($L$), time ($T$) current ($I$), amount of substance ($N$),\n   luminous intensity ($J$) and absolute temperature \n   ($\\theta$) as $dim \\, Q = L^{\\alpha} \\, M^{\\beta} \\, T^{\\gamma} \\, I ^{\\delta} \\, \\theta ^{\\epsilon} \\, N^{\\eta} \\, J ^{\\nu}$.\n\n\n  The rational powers of the dimensional exponents, $\\alpha, \\, \\beta, \\, \\gamma, \\, \\delta, \\, \\epsilon, \\, \\eta, \\, \\nu$, are positive, negative, or zero.\n\n  For example, the dimension of the physical quantity kind $\\it{speed}$ is $\\boxed{length\/time}$, $L\/T$ or $LT^{-1}$,\n   and the dimension of the physical quantity kind force is $\\boxed{mass \\times acceleration}$ or $\\boxed{mass \\times (length\/time)\/time}$, $ML\/T^2$ or $MLT^{-2}$ respectively.\n " 
    ,"informative reference":"http:\/\/en.wikipedia.org\/wiki\/Dimensional_analysis" 
    ,"informative reference":"http:\/\/web.mit.edu\/2.25\/www\/pdf\/DA_unified.pdf" 
    ,"isDefinedBy":"&lt;http:\/\/qudt.org\/2.1\/schema\/qudt&gt;" 
    ,"isDefinedBy":"&lt;http:\/\/qudt.org\/2.1\/schema\/shacl\/qudt&gt;" 
    ,"label":"Quantity Kind Dimension Vector" 
    ,"property":"qudt:QuantityKindDimensionVector-dimensionExponentForAmountOfSubstance" 
    ,"property":"qudt:QuantityKindDimensionVector-dimensionExponentForElectricCurrent" 
    ,"property":"qudt:QuantityKindDimensionVector-dimensionExponentForLength" 
    ,"property":"qudt:QuantityKindDimensionVector-dimensionExponentForLuminousIntensity" 
    ,"property":"qudt:QuantityKindDimensionVector-dimensionExponentForMass" 
    ,"property":"qudt:QuantityKindDimensionVector-dimensionExponentForThermodynamicTemperature" 
    ,"property":"qudt:QuantityKindDimensionVector-dimensionExponentForTime" 
    ,"property":"qudt:QuantityKindDimensionVector-dimensionlessExponent" 
    ,"property":"qudt:QuantityKindDimensionVector-hasReferenceQuantityKind" 
    ,"property":"qudt:QuantityKindDimensionVector-latexDefinition" 
    ,"property":"qudt:QuantityKindDimensionVector-latexSymbol" 
    ,"subClassOf":null 
    ,"subClassOf":null 
    ,"subClassOf":null 
    ,"subClassOf":null 
    ,"subClassOf":null 
    ,"subClassOf":null 
    ,"subClassOf":null 
    ,"subClassOf":null 
    ,"subClassOf":null 
    ,"subClassOf":null 
    ,"subClassOf":null 
    ,"subClassOf":"qudt:Concept" 
    ,"type":"rdfs:Class" 
    ,"type":"owl:Class" 
    ,"type":"sh:NodeShape" 
    ]}
JSON-LD
{
  "@id" : "http://qudt.org/schema/qudt/QuantityKindDimensionVector",
  "@type" : [ "owl:Class", "http://www.w3.org/ns/shacl#NodeShape", "rdfs:Class" ],
  "description" : "\n $\\text{Quantity Kind Dimension Vector}$ describes the dimensionality of a quantity kind in the context of a system of units. \n In the SI system of units, the dimensions of a quantity kind are expressed as a product of the basic\n  physical dimensions mass ($M$), length ($L$), time ($T$) current ($I$), amount of substance ($N$),\n   luminous intensity ($J$) and absolute temperature \n   ($\\theta$) as $dim \\, Q = L^{\\alpha} \\, M^{\\beta} \\, T^{\\gamma} \\, I ^{\\delta} \\, \\theta ^{\\epsilon} \\, N^{\\eta} \\, J ^{\\nu}$.\n\n\n  The rational powers of the dimensional exponents, $\\alpha, \\, \\beta, \\, \\gamma, \\, \\delta, \\, \\epsilon, \\, \\eta, \\, \\nu$, are positive, negative, or zero.\n\n  For example, the dimension of the physical quantity kind $\\it{speed}$ is $\\boxed{length/time}$, $L/T$ or $LT^{-1}$,\n   and the dimension of the physical quantity kind force is $\\boxed{mass \\times acceleration}$ or $\\boxed{mass \\times (length/time)/time}$, $ML/T^2$ or $MLT^{-2}$ respectively.\n ",
  "informativeReference" : [ "http://en.wikipedia.org/wiki/Dimensional_analysis", "http://web.mit.edu/2.25/www/pdf/DA_unified.pdf" ],
  "comment" : "<p class=\"lm-para\">A  <em>Quantity Kind Dimension Vector</em> describes the dimensionality of a quantity kind in the context of a system of units. In the SI system of units, the dimensions of a quantity kind are expressed as a product of the basic physical dimensions mass ($M$), length ($L$), time ($T$) current ($I$), amount of substance ($N$), luminous intensity ($J$) and absolute temperature ($\\theta$) as $dim \\, Q = L^{\\alpha} \\, M^{\\beta} \\, T^{\\gamma} \\, I ^{\\delta} \\, \\theta ^{\\epsilon} \\, N^{\\eta} \\, J ^{\\nu}$.</p>\n\n<p class=\"lm-para\">The rational powers of the dimensional exponents, $\\alpha, \\, \\beta, \\, \\gamma, \\, \\delta, \\, \\epsilon, \\, \\eta, \\, \\nu$, are positive, negative, or zero.</p>\n\n<p class=\"lm-para\">For example, the dimension of the physical quantity kind $\\it{speed}$ is $\\boxed{length/time}$, $L/T$ or $LT^{-1}$, and the dimension of the physical quantity kind force is $\\boxed{mass \\times acceleration}$ or $\\boxed{mass \\times (length/time)/time}$, $ML/T^2$ or $MLT^{-2}$ respectively.</p>",
  "isDefinedBy" : [ "http://qudt.org/2.1/schema/shacl/qudt", "http://qudt.org/2.1/schema/qudt" ],
  "label" : "Quantity Kind Dimension Vector",
  "subClassOf" : [ "http://qudt.org/schema/qudt/Concept", "_:b0", "_:b1", "_:b2", "_:b3", "_:b4", "_:b5", "_:b6", "_:b7", "_:b8", "_:b9", "_:b10" ],
  "property" : [ "http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForAmountOfSubstance", "http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForThermodynamicTemperature", "http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForElectricCurrent", "http://qudt.org/schema/qudt/QuantityKindDimensionVector-latexDefinition", "http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForMass", "http://qudt.org/schema/qudt/QuantityKindDimensionVector-hasReferenceQuantityKind", "http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForTime", "http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForLuminousIntensity", "http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionlessExponent", "http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForLength", "http://qudt.org/schema/qudt/QuantityKindDimensionVector-latexSymbol" ],
  "@context" : {
    "property" : {
      "@id" : "http://www.w3.org/ns/shacl#property",
      "@type" : "@id"
    },
    "subClassOf" : {
      "@id" : "http://www.w3.org/2000/01/rdf-schema#subClassOf",
      "@type" : "@id"
    },
    "informativeReference" : {
      "@id" : "http://qudt.org/schema/qudt/informativeReference",
      "@type" : "http://www.w3.org/2001/XMLSchema#anyURI"
    },
    "description" : {
      "@id" : "http://purl.org/dc/terms/description",
      "@type" : "http://qudt.org/schema/qudt/LatexString"
    },
    "label" : {
      "@id" : "http://www.w3.org/2000/01/rdf-schema#label"
    },
    "isDefinedBy" : {
      "@id" : "http://www.w3.org/2000/01/rdf-schema#isDefinedBy",
      "@type" : "@id"
    },
    "comment" : {
      "@id" : "http://www.w3.org/2000/01/rdf-schema#comment",
      "@type" : "http://www.w3.org/1999/02/22-rdf-syntax-ns#HTML"
    },
    "rdf" : "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
    "owl" : "http://www.w3.org/2002/07/owl#",
    "xsd" : "http://www.w3.org/2001/XMLSchema#",
    "rdfs" : "http://www.w3.org/2000/01/rdf-schema#"
  }
}

Generated 2024-03-22T14:25:22.154-04:00 by lmdoc version 1.1 with  TopBraid SPARQL Web Pages (SWP)