View as:
CSV
RDF/XML
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:j.0="http://qudt.org/schema/qudt/"
xmlns:j.1="http://purl.org/dc/terms/"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:j.2="http://www.w3.org/ns/shacl#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="http://qudt.org/schema/qudt/QuantityKindDimensionVector">
<j.2:property rdf:resource="http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForAmountOfSubstance"/>
<rdfs:subClassOf rdf:nodeID="A0"/>
<rdfs:subClassOf rdf:resource="http://qudt.org/schema/qudt/Concept"/>
<j.0:informativeReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://en.wikipedia.org/wiki/Dimensional_analysis</j.0:informativeReference>
<j.1:description rdf:datatype="http://qudt.org/schema/qudt/LatexString">
$\text{Quantity Kind Dimension Vector}$ describes the dimensionality of a quantity kind in the context of a system of units.
In the SI system of units, the dimensions of a quantity kind are expressed as a product of the basic
physical dimensions mass ($M$), length ($L$), time ($T$) current ($I$), amount of substance ($N$),
luminous intensity ($J$) and absolute temperature
($\theta$) as $dim \, Q = L^{\alpha} \, M^{\beta} \, T^{\gamma} \, I ^{\delta} \, \theta ^{\epsilon} \, N^{\eta} \, J ^{\nu}$.
The rational powers of the dimensional exponents, $\alpha, \, \beta, \, \gamma, \, \delta, \, \epsilon, \, \eta, \, \nu$, are positive, negative, or zero.
For example, the dimension of the physical quantity kind $\it{speed}$ is $\boxed{length/time}$, $L/T$ or $LT^{-1}$,
and the dimension of the physical quantity kind force is $\boxed{mass \times acceleration}$ or $\boxed{mass \times (length/time)/time}$, $ML/T^2$ or $MLT^{-2}$ respectively.
</j.1:description>
<j.2:property rdf:resource="http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForThermodynamicTemperature"/>
<rdfs:subClassOf rdf:nodeID="A1"/>
<rdfs:subClassOf rdf:nodeID="A2"/>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>
<rdfs:subClassOf rdf:nodeID="A3"/>
<rdfs:subClassOf rdf:nodeID="A4"/>
<j.2:property rdf:resource="http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForElectricCurrent"/>
<j.2:property rdf:resource="http://qudt.org/schema/qudt/QuantityKindDimensionVector-latexDefinition"/>
<j.0:informativeReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://web.mit.edu/2.25/www/pdf/DA_unified.pdf</j.0:informativeReference>
<rdfs:subClassOf rdf:nodeID="A5"/>
<rdf:type rdf:resource="http://www.w3.org/ns/shacl#NodeShape"/>
<rdfs:subClassOf rdf:nodeID="A6"/>
<rdfs:label>Quantity Kind Dimension Vector</rdfs:label>
<j.2:property rdf:resource="http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForMass"/>
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:subClassOf rdf:nodeID="A7"/>
<rdfs:subClassOf rdf:nodeID="A8"/>
<rdfs:isDefinedBy rdf:resource="http://qudt.org/2.1/schema/shacl/qudt"/>
<j.2:property rdf:resource="http://qudt.org/schema/qudt/QuantityKindDimensionVector-hasReferenceQuantityKind"/>
<rdfs:comment rdf:datatype="http://www.w3.org/1999/02/22-rdf-syntax-ns#HTML"><p class="lm-para">A <em>Quantity Kind Dimension Vector</em> describes the dimensionality of a quantity kind in the context of a system of units. In the SI system of units, the dimensions of a quantity kind are expressed as a product of the basic physical dimensions mass ($M$), length ($L$), time ($T$) current ($I$), amount of substance ($N$), luminous intensity ($J$) and absolute temperature ($\theta$) as $dim \, Q = L^{\alpha} \, M^{\beta} \, T^{\gamma} \, I ^{\delta} \, \theta ^{\epsilon} \, N^{\eta} \, J ^{\nu}$.</p>
<p class="lm-para">The rational powers of the dimensional exponents, $\alpha, \, \beta, \, \gamma, \, \delta, \, \epsilon, \, \eta, \, \nu$, are positive, negative, or zero.</p>
<p class="lm-para">For example, the dimension of the physical quantity kind $\it{speed}$ is $\boxed{length/time}$, $L/T$ or $LT^{-1}$, and the dimension of the physical quantity kind force is $\boxed{mass \times acceleration}$ or $\boxed{mass \times (length/time)/time}$, $ML/T^2$ or $MLT^{-2}$ respectively.</p></rdfs:comment>
<j.2:property rdf:resource="http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForTime"/>
<rdfs:isDefinedBy rdf:resource="http://qudt.org/2.1/schema/qudt"/>
<rdfs:subClassOf rdf:nodeID="A9"/>
<j.2:property rdf:resource="http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForLuminousIntensity"/>
<j.2:property rdf:resource="http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionlessExponent"/>
<rdfs:subClassOf rdf:nodeID="A10"/>
<j.2:property rdf:resource="http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForLength"/>
<j.2:property rdf:resource="http://qudt.org/schema/qudt/QuantityKindDimensionVector-latexSymbol"/>
</rdf:Description>
</rdf:RDF>
TURTLE
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
<http://qudt.org/schema/qudt/QuantityKindDimensionVector>
rdf:type rdfs:Class ;
rdf:type owl:Class ;
rdf:type <http://www.w3.org/ns/shacl#NodeShape> ;
<http://purl.org/dc/terms/description> """
$\\text{Quantity Kind Dimension Vector}$ describes the dimensionality of a quantity kind in the context of a system of units.
In the SI system of units, the dimensions of a quantity kind are expressed as a product of the basic
physical dimensions mass ($M$), length ($L$), time ($T$) current ($I$), amount of substance ($N$),
luminous intensity ($J$) and absolute temperature
($\\theta$) as $dim \\, Q = L^{\\alpha} \\, M^{\\beta} \\, T^{\\gamma} \\, I ^{\\delta} \\, \\theta ^{\\epsilon} \\, N^{\\eta} \\, J ^{\\nu}$.
The rational powers of the dimensional exponents, $\\alpha, \\, \\beta, \\, \\gamma, \\, \\delta, \\, \\epsilon, \\, \\eta, \\, \\nu$, are positive, negative, or zero.
For example, the dimension of the physical quantity kind $\\it{speed}$ is $\\boxed{length/time}$, $L/T$ or $LT^{-1}$,
and the dimension of the physical quantity kind force is $\\boxed{mass \\times acceleration}$ or $\\boxed{mass \\times (length/time)/time}$, $ML/T^2$ or $MLT^{-2}$ respectively.
"""^^<http://qudt.org/schema/qudt/LatexString> ;
<http://qudt.org/schema/qudt/informativeReference> "http://en.wikipedia.org/wiki/Dimensional_analysis"^^xsd:anyURI ;
<http://qudt.org/schema/qudt/informativeReference> "http://web.mit.edu/2.25/www/pdf/DA_unified.pdf"^^xsd:anyURI ;
rdfs:comment """<p class=\"lm-para\">A <em>Quantity Kind Dimension Vector</em> describes the dimensionality of a quantity kind in the context of a system of units. In the SI system of units, the dimensions of a quantity kind are expressed as a product of the basic physical dimensions mass ($M$), length ($L$), time ($T$) current ($I$), amount of substance ($N$), luminous intensity ($J$) and absolute temperature ($\\theta$) as $dim \\, Q = L^{\\alpha} \\, M^{\\beta} \\, T^{\\gamma} \\, I ^{\\delta} \\, \\theta ^{\\epsilon} \\, N^{\\eta} \\, J ^{\\nu}$.</p>
<p class=\"lm-para\">The rational powers of the dimensional exponents, $\\alpha, \\, \\beta, \\, \\gamma, \\, \\delta, \\, \\epsilon, \\, \\eta, \\, \\nu$, are positive, negative, or zero.</p>
<p class=\"lm-para\">For example, the dimension of the physical quantity kind $\\it{speed}$ is $\\boxed{length/time}$, $L/T$ or $LT^{-1}$, and the dimension of the physical quantity kind force is $\\boxed{mass \\times acceleration}$ or $\\boxed{mass \\times (length/time)/time}$, $ML/T^2$ or $MLT^{-2}$ respectively.</p>"""^^rdf:HTML ;
rdfs:isDefinedBy <http://qudt.org/2.1/schema/qudt> ;
rdfs:isDefinedBy <http://qudt.org/2.1/schema/shacl/qudt> ;
rdfs:label "Quantity Kind Dimension Vector" ;
rdfs:subClassOf <http://qudt.org/schema/qudt/Concept> ;
rdfs:subClassOf [] ;
rdfs:subClassOf [] ;
rdfs:subClassOf [] ;
rdfs:subClassOf [] ;
rdfs:subClassOf [] ;
rdfs:subClassOf [] ;
rdfs:subClassOf [] ;
rdfs:subClassOf [] ;
rdfs:subClassOf [] ;
rdfs:subClassOf [] ;
rdfs:subClassOf [] ;
<http://www.w3.org/ns/shacl#property> <http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForAmountOfSubstance> ;
<http://www.w3.org/ns/shacl#property> <http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForElectricCurrent> ;
<http://www.w3.org/ns/shacl#property> <http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForLength> ;
<http://www.w3.org/ns/shacl#property> <http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForLuminousIntensity> ;
<http://www.w3.org/ns/shacl#property> <http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForMass> ;
<http://www.w3.org/ns/shacl#property> <http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForThermodynamicTemperature> ;
<http://www.w3.org/ns/shacl#property> <http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForTime> ;
<http://www.w3.org/ns/shacl#property> <http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionlessExponent> ;
<http://www.w3.org/ns/shacl#property> <http://qudt.org/schema/qudt/QuantityKindDimensionVector-hasReferenceQuantityKind> ;
<http://www.w3.org/ns/shacl#property> <http://qudt.org/schema/qudt/QuantityKindDimensionVector-latexDefinition> ;
<http://www.w3.org/ns/shacl#property> <http://qudt.org/schema/qudt/QuantityKindDimensionVector-latexSymbol> ;
.
JSON
{"resource":"Quantity Kind Dimension Vector"
,"qname":"qudt:QuantityKindDimensionVector"
,"uri":"http:\/\/qudt.org\/schema\/qudt\/QuantityKindDimensionVector"
,"properties":["comment":"<p class=\"lm-para\">A <em>Quantity Kind Dimension Vector<\/em> describes the dimensionality of a quantity kind in the context of a system of units. In the SI system of units, the dimensions of a quantity kind are expressed as a product of the basic physical dimensions mass ($M$), length ($L$), time ($T$) current ($I$), amount of substance ($N$), luminous intensity ($J$) and absolute temperature ($\\theta$) as $dim \\, Q = L^{\\alpha} \\, M^{\\beta} \\, T^{\\gamma} \\, I ^{\\delta} \\, \\theta ^{\\epsilon} \\, N^{\\eta} \\, J ^{\\nu}$.<\/p>\n\n<p class=\"lm-para\">The rational powers of the dimensional exponents, $\\alpha, \\, \\beta, \\, \\gamma, \\, \\delta, \\, \\epsilon, \\, \\eta, \\, \\nu$, are positive, negative, or zero.<\/p>\n\n<p class=\"lm-para\">For example, the dimension of the physical quantity kind $\\it{speed}$ is $\\boxed{length\/time}$, $L\/T$ or $LT^{-1}$, and the dimension of the physical quantity kind force is $\\boxed{mass \\times acceleration}$ or $\\boxed{mass \\times (length\/time)\/time}$, $ML\/T^2$ or $MLT^{-2}$ respectively.<\/p>"
,"description":"\n $\\text{Quantity Kind Dimension Vector}$ describes the dimensionality of a quantity kind in the context of a system of units. \n In the SI system of units, the dimensions of a quantity kind are expressed as a product of the basic\n physical dimensions mass ($M$), length ($L$), time ($T$) current ($I$), amount of substance ($N$),\n luminous intensity ($J$) and absolute temperature \n ($\\theta$) as $dim \\, Q = L^{\\alpha} \\, M^{\\beta} \\, T^{\\gamma} \\, I ^{\\delta} \\, \\theta ^{\\epsilon} \\, N^{\\eta} \\, J ^{\\nu}$.\n\n\n The rational powers of the dimensional exponents, $\\alpha, \\, \\beta, \\, \\gamma, \\, \\delta, \\, \\epsilon, \\, \\eta, \\, \\nu$, are positive, negative, or zero.\n\n For example, the dimension of the physical quantity kind $\\it{speed}$ is $\\boxed{length\/time}$, $L\/T$ or $LT^{-1}$,\n and the dimension of the physical quantity kind force is $\\boxed{mass \\times acceleration}$ or $\\boxed{mass \\times (length\/time)\/time}$, $ML\/T^2$ or $MLT^{-2}$ respectively.\n "
,"informative reference":"http:\/\/en.wikipedia.org\/wiki\/Dimensional_analysis"
,"informative reference":"http:\/\/web.mit.edu\/2.25\/www\/pdf\/DA_unified.pdf"
,"isDefinedBy":"<http:\/\/qudt.org\/2.1\/schema\/qudt>"
,"isDefinedBy":"<http:\/\/qudt.org\/2.1\/schema\/shacl\/qudt>"
,"label":"Quantity Kind Dimension Vector"
,"property":"qudt:QuantityKindDimensionVector-dimensionExponentForAmountOfSubstance"
,"property":"qudt:QuantityKindDimensionVector-dimensionExponentForElectricCurrent"
,"property":"qudt:QuantityKindDimensionVector-dimensionExponentForLength"
,"property":"qudt:QuantityKindDimensionVector-dimensionExponentForLuminousIntensity"
,"property":"qudt:QuantityKindDimensionVector-dimensionExponentForMass"
,"property":"qudt:QuantityKindDimensionVector-dimensionExponentForThermodynamicTemperature"
,"property":"qudt:QuantityKindDimensionVector-dimensionExponentForTime"
,"property":"qudt:QuantityKindDimensionVector-dimensionlessExponent"
,"property":"qudt:QuantityKindDimensionVector-hasReferenceQuantityKind"
,"property":"qudt:QuantityKindDimensionVector-latexDefinition"
,"property":"qudt:QuantityKindDimensionVector-latexSymbol"
,"subClassOf":null
,"subClassOf":null
,"subClassOf":null
,"subClassOf":null
,"subClassOf":null
,"subClassOf":null
,"subClassOf":null
,"subClassOf":null
,"subClassOf":null
,"subClassOf":null
,"subClassOf":null
,"subClassOf":"qudt:Concept"
,"type":"rdfs:Class"
,"type":"owl:Class"
,"type":"sh:NodeShape"
]}
JSON-LD
{
"@id" : "http://qudt.org/schema/qudt/QuantityKindDimensionVector",
"@type" : [ "owl:Class", "http://www.w3.org/ns/shacl#NodeShape", "rdfs:Class" ],
"description" : "\n $\\text{Quantity Kind Dimension Vector}$ describes the dimensionality of a quantity kind in the context of a system of units. \n In the SI system of units, the dimensions of a quantity kind are expressed as a product of the basic\n physical dimensions mass ($M$), length ($L$), time ($T$) current ($I$), amount of substance ($N$),\n luminous intensity ($J$) and absolute temperature \n ($\\theta$) as $dim \\, Q = L^{\\alpha} \\, M^{\\beta} \\, T^{\\gamma} \\, I ^{\\delta} \\, \\theta ^{\\epsilon} \\, N^{\\eta} \\, J ^{\\nu}$.\n\n\n The rational powers of the dimensional exponents, $\\alpha, \\, \\beta, \\, \\gamma, \\, \\delta, \\, \\epsilon, \\, \\eta, \\, \\nu$, are positive, negative, or zero.\n\n For example, the dimension of the physical quantity kind $\\it{speed}$ is $\\boxed{length/time}$, $L/T$ or $LT^{-1}$,\n and the dimension of the physical quantity kind force is $\\boxed{mass \\times acceleration}$ or $\\boxed{mass \\times (length/time)/time}$, $ML/T^2$ or $MLT^{-2}$ respectively.\n ",
"informativeReference" : [ "http://en.wikipedia.org/wiki/Dimensional_analysis", "http://web.mit.edu/2.25/www/pdf/DA_unified.pdf" ],
"comment" : "<p class=\"lm-para\">A <em>Quantity Kind Dimension Vector</em> describes the dimensionality of a quantity kind in the context of a system of units. In the SI system of units, the dimensions of a quantity kind are expressed as a product of the basic physical dimensions mass ($M$), length ($L$), time ($T$) current ($I$), amount of substance ($N$), luminous intensity ($J$) and absolute temperature ($\\theta$) as $dim \\, Q = L^{\\alpha} \\, M^{\\beta} \\, T^{\\gamma} \\, I ^{\\delta} \\, \\theta ^{\\epsilon} \\, N^{\\eta} \\, J ^{\\nu}$.</p>\n\n<p class=\"lm-para\">The rational powers of the dimensional exponents, $\\alpha, \\, \\beta, \\, \\gamma, \\, \\delta, \\, \\epsilon, \\, \\eta, \\, \\nu$, are positive, negative, or zero.</p>\n\n<p class=\"lm-para\">For example, the dimension of the physical quantity kind $\\it{speed}$ is $\\boxed{length/time}$, $L/T$ or $LT^{-1}$, and the dimension of the physical quantity kind force is $\\boxed{mass \\times acceleration}$ or $\\boxed{mass \\times (length/time)/time}$, $ML/T^2$ or $MLT^{-2}$ respectively.</p>",
"isDefinedBy" : [ "http://qudt.org/2.1/schema/shacl/qudt", "http://qudt.org/2.1/schema/qudt" ],
"label" : "Quantity Kind Dimension Vector",
"subClassOf" : [ "_:b0", "http://qudt.org/schema/qudt/Concept", "_:b1", "_:b2", "_:b3", "_:b4", "_:b5", "_:b6", "_:b7", "_:b8", "_:b9", "_:b10" ],
"property" : [ "http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForAmountOfSubstance", "http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForThermodynamicTemperature", "http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForElectricCurrent", "http://qudt.org/schema/qudt/QuantityKindDimensionVector-latexDefinition", "http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForMass", "http://qudt.org/schema/qudt/QuantityKindDimensionVector-hasReferenceQuantityKind", "http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForTime", "http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForLuminousIntensity", "http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionlessExponent", "http://qudt.org/schema/qudt/QuantityKindDimensionVector-dimensionExponentForLength", "http://qudt.org/schema/qudt/QuantityKindDimensionVector-latexSymbol" ],
"@context" : {
"property" : {
"@id" : "http://www.w3.org/ns/shacl#property",
"@type" : "@id"
},
"subClassOf" : {
"@id" : "http://www.w3.org/2000/01/rdf-schema#subClassOf",
"@type" : "@id"
},
"informativeReference" : {
"@id" : "http://qudt.org/schema/qudt/informativeReference",
"@type" : "http://www.w3.org/2001/XMLSchema#anyURI"
},
"description" : {
"@id" : "http://purl.org/dc/terms/description",
"@type" : "http://qudt.org/schema/qudt/LatexString"
},
"label" : {
"@id" : "http://www.w3.org/2000/01/rdf-schema#label"
},
"isDefinedBy" : {
"@id" : "http://www.w3.org/2000/01/rdf-schema#isDefinedBy",
"@type" : "@id"
},
"comment" : {
"@id" : "http://www.w3.org/2000/01/rdf-schema#comment",
"@type" : "http://www.w3.org/1999/02/22-rdf-syntax-ns#HTML"
},
"rdf" : "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
"owl" : "http://www.w3.org/2002/07/owl#",
"xsd" : "http://www.w3.org/2001/XMLSchema#",
"rdfs" : "http://www.w3.org/2000/01/rdf-schema#"
}
}