View as:
CSV
RDF/XML
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:j.0="http://qudt.org/schema/qudt/"
xmlns:j.1="http://purl.org/dc/terms/"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="http://qudt.org/vocab/constant/BohrRadius">
<j.0:informativeReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31895</j.0:informativeReference>
<j.0:informativeReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://physics.nist.gov/cuu/Constants/bibliography.html</j.0:informativeReference>
<j.0:applicableSystem rdf:resource="http://qudt.org/vocab/sou/SI"/>
<j.0:normativeReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://www.iso.org/iso/catalogue_detail?csnumber=31895</j.0:normativeReference>
<rdfs:isDefinedBy rdf:resource="http://qudt.org/3.1.0/vocab/constant"/>
<j.0:informativeReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://www.deepnlp.org/blog/atomic-electro-chemical-equations</j.0:informativeReference>
<j.0:quantityValue rdf:resource="http://qudt.org/vocab/constant/Value_BohrRadius"/>
<j.0:hasQuantityKind rdf:resource="http://qudt.org/vocab/quantitykind/Length"/>
<j.0:latexDefinition rdf:datatype="http://qudt.org/schema/qudt/LatexString">$a_0 = \frac{4\pi \varepsilon_0 \hbar^2}{m_ee^2}$, where $\varepsilon_0$ is the electric constant, $\hbar$ is the reduced Planck constant, $m_e$ is the rest mass of electron, and $e$ is the elementary charge.</j.0:latexDefinition>
<j.0:informativeReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://en.wikipedia.org/wiki/Bohr_radius</j.0:informativeReference>
<rdf:type rdf:resource="http://qudt.org/schema/qudt/PhysicalConstant"/>
<j.0:informativeReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://byjus.com/physics/bohr-radius/</j.0:informativeReference>
<j.0:applicableUnit rdf:resource="http://qudt.org/vocab/unit/M"/>
<j.1:description rdf:datatype="http://qudt.org/schema/qudt/LatexString">
The $\textit{Bohr Radius}$ is a physical constant, approximately equal to the most probable distance
between the proton and electron in a hydrogen atom in its ground state.
It is named after Niels Bohr, due to its role in the Bohr model of an atom.
The precise definition of the Bohr radius is:
$$a_0 = \frac{4\pi \epsilon_0 \hbar^2}{me^2}$$
Where,
$a_0$ is the Bohr radius,
$\epsilon_0$ is the permittivity of a vacuum,
$m_e$ is the mass of an electron,
$\hbar$ is the reduced Planck's constant,
$e$ is the elementary charge.
When rearranged to highlight the role of the Coulomb constant and the elementary charge,
the formula can be shown as:
$$a_0 \equiv \frac{{\hbar ^2 }}{{m_e ke^2 }}$$
Where,
$a_0$ is the Bohr radius,
$m_e$ is the mass of an electron,
$\hbar$ is the reduced Planck's constant,
$k$ is the Coulomb Constant,
$e$ is the elementary charge.
</j.1:description>
<j.0:latexSymbol rdf:datatype="http://qudt.org/schema/qudt/LatexString">$a_0$</j.0:latexSymbol>
<rdfs:label xml:lang="en">Bohr Radius</rdfs:label>
<j.0:dbpediaMatch rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://dbpedia.org/resource/Bohr_radius</j.0:dbpediaMatch>
</rdf:Description>
</rdf:RDF>
TURTLE
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
<http://qudt.org/vocab/constant/BohrRadius>
rdf:type <http://qudt.org/schema/qudt/PhysicalConstant> ;
<http://purl.org/dc/terms/description> """
The $\\textit{Bohr Radius}$ is a physical constant, approximately equal to the most probable distance
between the proton and electron in a hydrogen atom in its ground state.
It is named after Niels Bohr, due to its role in the Bohr model of an atom.
The precise definition of the Bohr radius is:
$$a_0 = \\frac{4\\pi \\epsilon_0 \\hbar^2}{me^2}$$
Where,
$a_0$ is the Bohr radius,
$\\epsilon_0$ is the permittivity of a vacuum,
$m_e$ is the mass of an electron,
$\\hbar$ is the reduced Planck's constant,
$e$ is the elementary charge.
When rearranged to highlight the role of the Coulomb constant and the elementary charge,
the formula can be shown as:
$$a_0 \\equiv \\frac{{\\hbar ^2 }}{{m_e ke^2 }}$$
Where,
$a_0$ is the Bohr radius,
$m_e$ is the mass of an electron,
$\\hbar$ is the reduced Planck's constant,
$k$ is the Coulomb Constant,
$e$ is the elementary charge.
"""^^<http://qudt.org/schema/qudt/LatexString> ;
<http://qudt.org/schema/qudt/applicableSystem> <http://qudt.org/vocab/sou/SI> ;
<http://qudt.org/schema/qudt/applicableUnit> <http://qudt.org/vocab/unit/M> ;
<http://qudt.org/schema/qudt/dbpediaMatch> "http://dbpedia.org/resource/Bohr_radius"^^xsd:anyURI ;
<http://qudt.org/schema/qudt/hasQuantityKind> <http://qudt.org/vocab/quantitykind/Length> ;
<http://qudt.org/schema/qudt/informativeReference> "http://en.wikipedia.org/wiki/Bohr_radius"^^xsd:anyURI ;
<http://qudt.org/schema/qudt/informativeReference> "http://physics.nist.gov/cuu/Constants/bibliography.html"^^xsd:anyURI ;
<http://qudt.org/schema/qudt/informativeReference> "http://www.deepnlp.org/blog/atomic-electro-chemical-equations"^^xsd:anyURI ;
<http://qudt.org/schema/qudt/informativeReference> "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31895"^^xsd:anyURI ;
<http://qudt.org/schema/qudt/informativeReference> "https://byjus.com/physics/bohr-radius/"^^xsd:anyURI ;
<http://qudt.org/schema/qudt/latexDefinition> "$a_0 = \\frac{4\\pi \\varepsilon_0 \\hbar^2}{m_ee^2}$, where $\\varepsilon_0$ is the electric constant, $\\hbar$ is the reduced Planck constant, $m_e$ is the rest mass of electron, and $e$ is the elementary charge."^^<http://qudt.org/schema/qudt/LatexString> ;
<http://qudt.org/schema/qudt/latexSymbol> "$a_0$"^^<http://qudt.org/schema/qudt/LatexString> ;
<http://qudt.org/schema/qudt/normativeReference> "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^xsd:anyURI ;
<http://qudt.org/schema/qudt/quantityValue> <http://qudt.org/vocab/constant/Value_BohrRadius> ;
rdfs:isDefinedBy <http://qudt.org/3.1.0/vocab/constant> ;
rdfs:label "Bohr Radius"@en ;
.
JSON
{"resource":"Bohr Radius"
,"qname":"constant:BohrRadius"
,"uri":"http:\/\/qudt.org\/vocab\/constant\/BohrRadius"
,"properties":["applicable system":"sou:SI"
,"applicable unit":"unit:M"
,"dbpedia match":"http:\/\/dbpedia.org\/resource\/Bohr_radius"
,"description":"\n The $\\textit{Bohr Radius}$ is a physical constant, approximately equal to the most probable distance\n between the proton and electron in a hydrogen atom in its ground state. \n It is named after Niels Bohr, due to its role in the Bohr model of an atom.\n The precise definition of the Bohr radius is: \n \n $$a_0 = \\frac{4\\pi \\epsilon_0 \\hbar^2}{me^2}$$\n\n Where,\n $a_0$ is the Bohr radius,\n $\\epsilon_0$ is the permittivity of a vacuum,\n $m_e$ is the mass of an electron,\n $\\hbar$ is the reduced Planck's constant,\n $e$ is the elementary charge.\n\n When rearranged to highlight the role of the Coulomb constant and the elementary charge,\n the formula can be shown as:\n\n $$a_0 \\equiv \\frac{{\\hbar ^2 }}{{m_e ke^2 }}$$\n \n Where,\n $a_0$ is the Bohr radius,\n $m_e$ is the mass of an electron,\n $\\hbar$ is the reduced Planck's constant,\n $k$ is the Coulomb Constant,\n $e$ is the elementary charge.\n\n "
,"has quantity kind":"quantitykind:Length"
,"informative reference":"http:\/\/en.wikipedia.org\/wiki\/Bohr_radius"
,"informative reference":"http:\/\/physics.nist.gov\/cuu\/Constants\/bibliography.html"
,"informative reference":"http:\/\/www.deepnlp.org\/blog\/atomic-electro-chemical-equations"
,"informative reference":"http:\/\/www.iso.org\/iso\/home\/store\/catalogue_tc\/catalogue_detail.htm?csnumber=31895"
,"informative reference":"https:\/\/byjus.com\/physics\/bohr-radius\/"
,"isDefinedBy":"<http:\/\/qudt.org\/3.1.0\/vocab\/constant>"
,"label":"Bohr Radius"
,"latex definition":"$a_0 = \\frac{4\\pi \\varepsilon_0 \\hbar^2}{m_ee^2}$, where $\\varepsilon_0$ is the electric constant, $\\hbar$ is the reduced Planck constant, $m_e$ is the rest mass of electron, and $e$ is the elementary charge."
,"latex symbol":"$a_0$"
,"normative reference":"http:\/\/www.iso.org\/iso\/catalogue_detail?csnumber=31895"
,"quantity value":"constant:Value_BohrRadius"
,"type":"qudt:PhysicalConstant"
]}
JSON-LD
{
"@id" : "http://qudt.org/vocab/constant/BohrRadius",
"@type" : "http://qudt.org/schema/qudt/PhysicalConstant",
"description" : "\n The $\\textit{Bohr Radius}$ is a physical constant, approximately equal to the most probable distance\n between the proton and electron in a hydrogen atom in its ground state. \n It is named after Niels Bohr, due to its role in the Bohr model of an atom.\n The precise definition of the Bohr radius is: \n \n $$a_0 = \\frac{4\\pi \\epsilon_0 \\hbar^2}{me^2}$$\n\n Where,\n $a_0$ is the Bohr radius,\n $\\epsilon_0$ is the permittivity of a vacuum,\n $m_e$ is the mass of an electron,\n $\\hbar$ is the reduced Planck's constant,\n $e$ is the elementary charge.\n\n When rearranged to highlight the role of the Coulomb constant and the elementary charge,\n the formula can be shown as:\n\n $$a_0 \\equiv \\frac{{\\hbar ^2 }}{{m_e ke^2 }}$$\n \n Where,\n $a_0$ is the Bohr radius,\n $m_e$ is the mass of an electron,\n $\\hbar$ is the reduced Planck's constant,\n $k$ is the Coulomb Constant,\n $e$ is the elementary charge.\n\n ",
"applicableSystem" : "http://qudt.org/vocab/sou/SI",
"applicableUnit" : "http://qudt.org/vocab/unit/M",
"dbpediaMatch" : "http://dbpedia.org/resource/Bohr_radius",
"hasQuantityKind" : "http://qudt.org/vocab/quantitykind/Length",
"informativeReference" : [ "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31895", "http://physics.nist.gov/cuu/Constants/bibliography.html", "http://www.deepnlp.org/blog/atomic-electro-chemical-equations", "http://en.wikipedia.org/wiki/Bohr_radius", "https://byjus.com/physics/bohr-radius/" ],
"latexDefinition" : "$a_0 = \\frac{4\\pi \\varepsilon_0 \\hbar^2}{m_ee^2}$, where $\\varepsilon_0$ is the electric constant, $\\hbar$ is the reduced Planck constant, $m_e$ is the rest mass of electron, and $e$ is the elementary charge.",
"latexSymbol" : "$a_0$",
"normativeReference" : "http://www.iso.org/iso/catalogue_detail?csnumber=31895",
"quantityValue" : "http://qudt.org/vocab/constant/Value_BohrRadius",
"isDefinedBy" : "http://qudt.org/3.1.0/vocab/constant",
"label" : {
"@language" : "en",
"@value" : "Bohr Radius"
},
"@context" : {
"informativeReference" : {
"@id" : "http://qudt.org/schema/qudt/informativeReference",
"@type" : "http://www.w3.org/2001/XMLSchema#anyURI"
},
"applicableSystem" : {
"@id" : "http://qudt.org/schema/qudt/applicableSystem",
"@type" : "@id"
},
"normativeReference" : {
"@id" : "http://qudt.org/schema/qudt/normativeReference",
"@type" : "http://www.w3.org/2001/XMLSchema#anyURI"
},
"isDefinedBy" : {
"@id" : "http://www.w3.org/2000/01/rdf-schema#isDefinedBy",
"@type" : "@id"
},
"quantityValue" : {
"@id" : "http://qudt.org/schema/qudt/quantityValue",
"@type" : "@id"
},
"hasQuantityKind" : {
"@id" : "http://qudt.org/schema/qudt/hasQuantityKind",
"@type" : "@id"
},
"latexDefinition" : {
"@id" : "http://qudt.org/schema/qudt/latexDefinition",
"@type" : "http://qudt.org/schema/qudt/LatexString"
},
"applicableUnit" : {
"@id" : "http://qudt.org/schema/qudt/applicableUnit",
"@type" : "@id"
},
"description" : {
"@id" : "http://purl.org/dc/terms/description",
"@type" : "http://qudt.org/schema/qudt/LatexString"
},
"latexSymbol" : {
"@id" : "http://qudt.org/schema/qudt/latexSymbol",
"@type" : "http://qudt.org/schema/qudt/LatexString"
},
"label" : {
"@id" : "http://www.w3.org/2000/01/rdf-schema#label"
},
"dbpediaMatch" : {
"@id" : "http://qudt.org/schema/qudt/dbpediaMatch",
"@type" : "http://www.w3.org/2001/XMLSchema#anyURI"
},
"rdf" : "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
"owl" : "http://www.w3.org/2002/07/owl#",
"xsd" : "http://www.w3.org/2001/XMLSchema#",
"rdfs" : "http://www.w3.org/2000/01/rdf-schema#"
}
}