quantitykind:PlanckFunction

URI: http://qudt.org/vocab/quantitykind/PlanckFunction

Type
Description

The Planck function is used to compute the radiance emitted from objects that radiate like a perfect "Black Body". The inverse of the Planck Function is used to find the Brightness Temperature of an object. The precise formula for the Planck Function depends on whether the radiance is determined on a per unit wavelength or a per unit frequency. In the ISO System of Quantities, Planck Function is defined by the formula: Y=G/T, where G is Gibbs Energy and T is thermodynamic temperature.

Properties
qudt:latexDefinition
The Planck function, Bν~(T), is given by: Bν(T)=2hc2ν~3ehc/kν~T1 where, ν~ is wavelength, h is Planck's Constant, k is Boltzman's Constant, c is the speed of light in a vacuum, T is thermodynamic temperature.
Annotations
dcterms:description
The Planck function is used to compute the radiance emitted from objects that radiate like a perfect "Black Body". The inverse of the Planck Function is used to find the Brightness Temperature of an object. The precise formula for the Planck Function depends on whether the radiance is determined on a per unit wavelength or a per unit frequency. In the ISO System of Quantities, Planck Function is defined by the formula: Y=G/T, where G is Gibbs Energy and T is thermodynamic temperature.
rdfs:label
Planck Function(en)
View as:  CSV

Work in progress

RDF/XML
<rdf:RDF
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:j.0="http://qudt.org/schema/qudt/"
    xmlns:j.1="http://purl.org/dc/terms/"
    xmlns:owl="http://www.w3.org/2002/07/owl#"
    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="http://qudt.org/vocab/quantitykind/PlanckFunction">
    <j.0:isoNormativeReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://www.iso.org/iso/catalogue_detail?csnumber=31890</j.0:isoNormativeReference>
    <rdfs:seeAlso rdf:resource="http://qudt.org/vocab/quantitykind/SpecificInternalEnergy"/>
    <rdfs:label xml:lang="en">Planck Function</rdfs:label>
    <rdfs:isDefinedBy rdf:resource="http://qudt.org/3.1.0/vocab/quantitykind"/>
    <j.0:informativeReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://pds-atmospheres.nmsu.edu/education_and_outreach/encyclopedia/planck_function.htm</j.0:informativeReference>
    <rdf:type rdf:resource="http://qudt.org/schema/qudt/QuantityKind"/>
    <j.0:expression rdf:datatype="http://qudt.org/schema/qudt/LatexString">$B_{\nu}(T)$</j.0:expression>
    <j.0:informativeReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://www.star.nesdis.noaa.gov/smcd/spb/calibration/planck.html</j.0:informativeReference>
    <rdfs:seeAlso rdf:resource="http://qudt.org/vocab/quantitykind/SpecificEnergy"/>
    <j.1:description rdf:datatype="http://qudt.org/schema/qudt/LatexString">The $\textit{Planck function}$ is used to compute the radiance emitted from objects that radiate like a perfect "Black Body". The inverse of the $\textit{Planck Function}$ is used to find the $\textit{Brightness Temperature}$ of an object. The precise formula for the Planck Function depends on whether the radiance is determined on a $\textit{per unit wavelength}$ or a $\textit{per unit frequency}$. In the ISO System of Quantities, $\textit{Planck Function}$ is defined by the formula: $Y = -G/T$, where $G$ is Gibbs Energy and $T$ is thermodynamic temperature.</j.1:description>
    <rdfs:seeAlso rdf:resource="http://qudt.org/vocab/quantitykind/SpecificEnthalpy"/>
    <j.0:latexDefinition rdf:datatype="http://qudt.org/schema/qudt/LatexString">The Planck function, $B_{\tilde{\nu}}(T)$, is given by:
$B_{\nu}(T) = \frac{2h c^2\tilde{\nu}^3}{e^{hc / k \tilde{\nu} T}-1}$
where, $\tilde{\nu}$ is wavelength, $h$ is Planck's Constant, $k$ is Boltzman's Constant, $c$ is the speed of light in a vacuum, $T$ is thermodynamic temperature.</j.0:latexDefinition>
    <j.0:hasDimensionVector rdf:resource="http://qudt.org/vocab/dimensionvector/A0E0L2I0M1H0T-2D0"/>
    <rdfs:seeAlso rdf:resource="http://qudt.org/vocab/quantitykind/SpecificGibbsEnergy"/>
    <rdfs:seeAlso rdf:resource="http://qudt.org/vocab/quantitykind/MassieuFunction"/>
    <rdfs:seeAlso rdf:resource="http://qudt.org/vocab/quantitykind/SpecificHelmholtzEnergy"/>
  </rdf:Description>
</rdf:RDF>
TURTLE
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://qudt.org/vocab/quantitykind/PlanckFunction>
  rdf:type <http://qudt.org/schema/qudt/QuantityKind> ;
  <http://purl.org/dc/terms/description> "The $\\textit{Planck function}$ is used to compute the radiance emitted from objects that radiate like a perfect \"Black Body\". The inverse of the $\\textit{Planck Function}$ is used to find the $\\textit{Brightness Temperature}$ of an object. The precise formula for the Planck Function depends on whether the radiance is determined on a $\\textit{per unit wavelength}$ or a $\\textit{per unit frequency}$. In the ISO System of Quantities, $\\textit{Planck Function}$ is defined by the formula: $Y = -G/T$, where $G$ is Gibbs Energy and $T$ is thermodynamic temperature."^^<http://qudt.org/schema/qudt/LatexString> ;
  <http://qudt.org/schema/qudt/expression> "$B_{\\nu}(T)$"^^<http://qudt.org/schema/qudt/LatexString> ;
  <http://qudt.org/schema/qudt/hasDimensionVector> <http://qudt.org/vocab/dimensionvector/A0E0L2I0M1H0T-2D0> ;
  <http://qudt.org/schema/qudt/informativeReference> "http://pds-atmospheres.nmsu.edu/education_and_outreach/encyclopedia/planck_function.htm"^^xsd:anyURI ;
  <http://qudt.org/schema/qudt/informativeReference> "http://www.star.nesdis.noaa.gov/smcd/spb/calibration/planck.html"^^xsd:anyURI ;
  <http://qudt.org/schema/qudt/isoNormativeReference> "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^xsd:anyURI ;
  <http://qudt.org/schema/qudt/latexDefinition> """The Planck function, $B_{\\tilde{\\nu}}(T)$, is given by:
$B_{\\nu}(T) = \\frac{2h c^2\\tilde{\\nu}^3}{e^{hc / k \\tilde{\\nu} T}-1}$
where, $\\tilde{\\nu}$ is wavelength, $h$ is Planck's Constant, $k$ is Boltzman's Constant, $c$ is the speed of light in a vacuum, $T$ is thermodynamic temperature."""^^<http://qudt.org/schema/qudt/LatexString> ;
  rdfs:isDefinedBy <http://qudt.org/3.1.0/vocab/quantitykind> ;
  rdfs:label "Planck Function"@en ;
  rdfs:seeAlso <http://qudt.org/vocab/quantitykind/MassieuFunction> ;
  rdfs:seeAlso <http://qudt.org/vocab/quantitykind/SpecificEnergy> ;
  rdfs:seeAlso <http://qudt.org/vocab/quantitykind/SpecificEnthalpy> ;
  rdfs:seeAlso <http://qudt.org/vocab/quantitykind/SpecificGibbsEnergy> ;
  rdfs:seeAlso <http://qudt.org/vocab/quantitykind/SpecificHelmholtzEnergy> ;
  rdfs:seeAlso <http://qudt.org/vocab/quantitykind/SpecificInternalEnergy> ;
.
JSON
{"resource":"Planck Function" 
 ,"qname":"quantitykind:PlanckFunction" 
 ,"uri":"http:\/\/qudt.org\/vocab\/quantitykind\/PlanckFunction" 
 ,"properties":["description":"The $\\textit{Planck function}$ is used to compute the radiance emitted from objects that radiate like a perfect \"Black Body\". The inverse of the $\\textit{Planck Function}$ is used to find the $\\textit{Brightness Temperature}$ of an object. The precise formula for the Planck Function depends on whether the radiance is determined on a $\\textit{per unit wavelength}$ or a $\\textit{per unit frequency}$. In the ISO System of Quantities, $\\textit{Planck Function}$ is defined by the formula: $Y = -G\/T$, where $G$ is Gibbs Energy and $T$ is thermodynamic temperature." 
    ,"expression":"$B_{\\nu}(T)$" 
    ,"has dimension vector":"dimension:A0E0L2I0M1H0T-2D0" 
    ,"informative reference":"http:\/\/pds-atmospheres.nmsu.edu\/education_and_outreach\/encyclopedia\/planck_function.htm" 
    ,"informative reference":"http:\/\/www.star.nesdis.noaa.gov\/smcd\/spb\/calibration\/planck.html" 
    ,"isDefinedBy":"&lt;http:\/\/qudt.org\/3.1.0\/vocab\/quantitykind&gt;" 
    ,"label":"Planck Function" 
    ,"latex definition":"The Planck function, $B_{\\tilde{\\nu}}(T)$, is given by:\n$B_{\\nu}(T) = \\frac{2h c^2\\tilde{\\nu}^3}{e^{hc \/ k \\tilde{\\nu} T}-1}$\nwhere, $\\tilde{\\nu}$ is wavelength, $h$ is Planck's Constant, $k$ is Boltzman's Constant, $c$ is the speed of light in a vacuum, $T$ is thermodynamic temperature." 
    ,"normative reference (ISO)":"http:\/\/www.iso.org\/iso\/catalogue_detail?csnumber=31890" 
    ,"seeAlso":"quantitykind:MassieuFunction" 
    ,"seeAlso":"quantitykind:SpecificEnergy" 
    ,"seeAlso":"quantitykind:SpecificEnthalpy" 
    ,"seeAlso":"quantitykind:SpecificGibbsEnergy" 
    ,"seeAlso":"quantitykind:SpecificHelmholtzEnergy" 
    ,"seeAlso":"quantitykind:SpecificInternalEnergy" 
    ,"type":"qudt:QuantityKind" 
    ]}
JSON-LD
{
  "@id" : "http://qudt.org/vocab/quantitykind/PlanckFunction",
  "@type" : "http://qudt.org/schema/qudt/QuantityKind",
  "description" : "The $\\textit{Planck function}$ is used to compute the radiance emitted from objects that radiate like a perfect \"Black Body\". The inverse of the $\\textit{Planck Function}$ is used to find the $\\textit{Brightness Temperature}$ of an object. The precise formula for the Planck Function depends on whether the radiance is determined on a $\\textit{per unit wavelength}$ or a $\\textit{per unit frequency}$. In the ISO System of Quantities, $\\textit{Planck Function}$ is defined by the formula: $Y = -G/T$, where $G$ is Gibbs Energy and $T$ is thermodynamic temperature.",
  "expression" : "$B_{\\nu}(T)$",
  "hasDimensionVector" : "http://qudt.org/vocab/dimensionvector/A0E0L2I0M1H0T-2D0",
  "informativeReference" : [ "http://pds-atmospheres.nmsu.edu/education_and_outreach/encyclopedia/planck_function.htm", "http://www.star.nesdis.noaa.gov/smcd/spb/calibration/planck.html" ],
  "isoNormativeReference" : "http://www.iso.org/iso/catalogue_detail?csnumber=31890",
  "latexDefinition" : "The Planck function, $B_{\\tilde{\\nu}}(T)$, is given by:\n$B_{\\nu}(T) = \\frac{2h c^2\\tilde{\\nu}^3}{e^{hc / k \\tilde{\\nu} T}-1}$\nwhere, $\\tilde{\\nu}$ is wavelength, $h$ is Planck's Constant, $k$ is Boltzman's Constant, $c$ is the speed of light in a vacuum, $T$ is thermodynamic temperature.",
  "isDefinedBy" : "http://qudt.org/3.1.0/vocab/quantitykind",
  "label" : {
    "@language" : "en",
    "@value" : "Planck Function"
  },
  "seeAlso" : [ "http://qudt.org/vocab/quantitykind/SpecificInternalEnergy", "http://qudt.org/vocab/quantitykind/SpecificEnergy", "http://qudt.org/vocab/quantitykind/SpecificEnthalpy", "http://qudt.org/vocab/quantitykind/SpecificGibbsEnergy", "http://qudt.org/vocab/quantitykind/MassieuFunction", "http://qudt.org/vocab/quantitykind/SpecificHelmholtzEnergy" ],
  "@context" : {
    "isoNormativeReference" : {
      "@id" : "http://qudt.org/schema/qudt/isoNormativeReference",
      "@type" : "http://www.w3.org/2001/XMLSchema#anyURI"
    },
    "seeAlso" : {
      "@id" : "http://www.w3.org/2000/01/rdf-schema#seeAlso",
      "@type" : "@id"
    },
    "label" : {
      "@id" : "http://www.w3.org/2000/01/rdf-schema#label"
    },
    "isDefinedBy" : {
      "@id" : "http://www.w3.org/2000/01/rdf-schema#isDefinedBy",
      "@type" : "@id"
    },
    "informativeReference" : {
      "@id" : "http://qudt.org/schema/qudt/informativeReference",
      "@type" : "http://www.w3.org/2001/XMLSchema#anyURI"
    },
    "expression" : {
      "@id" : "http://qudt.org/schema/qudt/expression",
      "@type" : "http://qudt.org/schema/qudt/LatexString"
    },
    "description" : {
      "@id" : "http://purl.org/dc/terms/description",
      "@type" : "http://qudt.org/schema/qudt/LatexString"
    },
    "latexDefinition" : {
      "@id" : "http://qudt.org/schema/qudt/latexDefinition",
      "@type" : "http://qudt.org/schema/qudt/LatexString"
    },
    "hasDimensionVector" : {
      "@id" : "http://qudt.org/schema/qudt/hasDimensionVector",
      "@type" : "@id"
    },
    "rdf" : "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
    "owl" : "http://www.w3.org/2002/07/owl#",
    "xsd" : "http://www.w3.org/2001/XMLSchema#",
    "rdfs" : "http://www.w3.org/2000/01/rdf-schema#"
  }
}

Generated 2025-03-20T14:37:32.647-04:00 by lmdoc version 1.1 with  TopBraid SPARQL Web Pages (SWP)