qudt:QuantityKindDimensionVector

URI: http://qudt.org/schema/qudt/QuantityKindDimensionVector

Type
Description

A Quantity Kind Dimension Vector describes the dimensionality of a quantity kind in the context of a system of units. In the SI system of units, the dimensions of a quantity kind are expressed as a product of the basic physical dimensions mass (\(M\)), length (\(L\)), time (\(T\)) current (\(I\)), amount of substance (\(N\)), luminous intensity (\(J\)) and absolute temperature (\(\theta\)) as \(dim \, Q = L^{\alpha} \, M^{\beta} \, T^{\gamma} \, I ^{\delta} \, \theta ^{\epsilon} \, N^{\eta} \, J ^{\nu}\).

The rational powers of the dimensional exponents, \(\alpha, \, \beta, \, \gamma, \, \delta, \, \epsilon, \, \eta, \, \nu\), are positive, negative, or zero.

For example, the dimension of the physical quantity kind \(\it{speed}\) is \(\boxed{length/time}\), \(L/T\) or \(LT^{-1}\), and the dimension of the physical quantity kind force is \(\boxed{mass \times acceleration}\) or \(\boxed{mass \times (length/time)/time}\), \(ML/T^2\) or \(MLT^{-2}\) respectively.

Properties
rdfs:subClassOf
`base unit dimensions` max 1
`dimension exponent for amount of substance` exactly 1
`dimension exponent for electric current` exactly 1
`dimension exponent for length` exactly 1
`dimension exponent for luminous intensity` exactly 1
`dimension exponent for mass` exactly 1
`dimension exponent for thermodynamic temperature` exactly 1
`dimension exponent for time` exactly 1
`dimensionless exponent` exactly 1
`latex definition` max 1
Annotations
rdfs:comment

A Quantity Kind Dimension Vector describes the dimensionality of a quantity kind in the context of a system of units. In the SI system of units, the dimensions of a quantity kind are expressed as a product of the basic physical dimensions mass (\(M\)), length (\(L\)), time (\(T\)) current (\(I\)), amount of substance (\(N\)), luminous intensity (\(J\)) and absolute temperature (\(\theta\)) as \(dim \, Q = L^{\alpha} \, M^{\beta} \, T^{\gamma} \, I ^{\delta} \, \theta ^{\epsilon} \, N^{\eta} \, J ^{\nu}\).

The rational powers of the dimensional exponents, \(\alpha, \, \beta, \, \gamma, \, \delta, \, \epsilon, \, \eta, \, \nu\), are positive, negative, or zero.

For example, the dimension of the physical quantity kind \(\it{speed}\) is \(\boxed{length/time}\), \(L/T\) or \(LT^{-1}\), and the dimension of the physical quantity kind force is \(\boxed{mass \times acceleration}\) or \(\boxed{mass \times (length/time)/time}\), \(ML/T^2\) or \(MLT^{-2}\) respectively.

rdfs:label
Quantity Kind Dimension Vector
View as:  CSV

Work in progress

RDF/XML
<rdf:RDF
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:j.0="http://qudt.org/schema/qudt/"
    xmlns:owl="http://www.w3.org/2002/07/owl#"
    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="http://qudt.org/schema/qudt/QuantityKindDimensionVector">
    <rdfs:subClassOf rdf:nodeID="A0"/>
    <rdfs:subClassOf rdf:resource="http://qudt.org/schema/qudt/Concept"/>
    <rdfs:subClassOf rdf:nodeID="A1"/>
    <j.0:informativeReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://en.wikipedia.org/wiki/Dimensional_analysis</j.0:informativeReference>
    <rdfs:subClassOf rdf:nodeID="A2"/>
    <rdfs:subClassOf rdf:nodeID="A3"/>
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>
    <rdfs:subClassOf rdf:nodeID="A4"/>
    <j.0:informativeReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://web.mit.edu/2.25/www/pdf/DA_unified.pdf</j.0:informativeReference>
    <rdfs:subClassOf rdf:nodeID="A5"/>
    <rdfs:label>Quantity Kind Dimension Vector</rdfs:label>
    <rdfs:subClassOf rdf:nodeID="A6"/>
    <rdfs:isDefinedBy rdf:resource="http://qudt.org/2.1/schema/qudt"/>
    <rdfs:subClassOf rdf:nodeID="A7"/>
    <rdfs:subClassOf rdf:nodeID="A8"/>
    <rdfs:subClassOf rdf:nodeID="A9"/>
    <rdfs:comment rdf:datatype="http://www.w3.org/1999/02/22-rdf-syntax-ns#HTML">&lt;p class="lm-para"&gt;A  &lt;em&gt;Quantity Kind Dimension Vector&lt;/em&gt; describes the dimensionality of a quantity kind in the context of a system of units. In the SI system of units, the dimensions of a quantity kind are expressed as a product of the basic physical dimensions mass (\(M\)), length (\(L\)), time (\(T\)) current (\(I\)), amount of substance (\(N\)), luminous intensity (\(J\)) and absolute temperature (\(\theta\)) as \(dim \, Q = L^{\alpha} \, M^{\beta} \, T^{\gamma} \, I ^{\delta} \, \theta ^{\epsilon} \, N^{\eta} \, J ^{\nu}\).&lt;/p&gt;

&lt;p class="lm-para"&gt;The rational powers of the dimensional exponents, \(\alpha, \, \beta, \, \gamma, \, \delta, \, \epsilon, \, \eta, \, \nu\), are positive, negative, or zero.&lt;/p&gt;

&lt;p class="lm-para"&gt;For example, the dimension of the physical quantity kind \(\it{speed}\) is \(\boxed{length/time}\), \(L/T\) or \(LT^{-1}\), and the dimension of the physical quantity kind force is \(\boxed{mass \times acceleration}\) or \(\boxed{mass \times (length/time)/time}\), \(ML/T^2\) or \(MLT^{-2}\) respectively.&lt;/p&gt;</rdfs:comment>
  </rdf:Description>
</rdf:RDF>
TURTLE
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://qudt.org/schema/qudt/QuantityKindDimensionVector>
  rdf:type owl:Class ;
  <http://qudt.org/schema/qudt/informativeReference> "http://en.wikipedia.org/wiki/Dimensional_analysis"^^xsd:anyURI ;
  <http://qudt.org/schema/qudt/informativeReference> "http://web.mit.edu/2.25/www/pdf/DA_unified.pdf"^^xsd:anyURI ;
  rdfs:comment """<p class=\"lm-para\">A  <em>Quantity Kind Dimension Vector</em> describes the dimensionality of a quantity kind in the context of a system of units. In the SI system of units, the dimensions of a quantity kind are expressed as a product of the basic physical dimensions mass (\\(M\\)), length (\\(L\\)), time (\\(T\\)) current (\\(I\\)), amount of substance (\\(N\\)), luminous intensity (\\(J\\)) and absolute temperature (\\(\\theta\\)) as \\(dim \\, Q = L^{\\alpha} \\, M^{\\beta} \\, T^{\\gamma} \\, I ^{\\delta} \\, \\theta ^{\\epsilon} \\, N^{\\eta} \\, J ^{\\nu}\\).</p>

<p class=\"lm-para\">The rational powers of the dimensional exponents, \\(\\alpha, \\, \\beta, \\, \\gamma, \\, \\delta, \\, \\epsilon, \\, \\eta, \\, \\nu\\), are positive, negative, or zero.</p>

<p class=\"lm-para\">For example, the dimension of the physical quantity kind \\(\\it{speed}\\) is \\(\\boxed{length/time}\\), \\(L/T\\) or \\(LT^{-1}\\), and the dimension of the physical quantity kind force is \\(\\boxed{mass \\times acceleration}\\) or \\(\\boxed{mass \\times (length/time)/time}\\), \\(ML/T^2\\) or \\(MLT^{-2}\\) respectively.</p>"""^^rdf:HTML ;
  rdfs:isDefinedBy <http://qudt.org/2.1/schema/qudt> ;
  rdfs:label "Quantity Kind Dimension Vector" ;
  rdfs:subClassOf <http://qudt.org/schema/qudt/Concept> ;
  rdfs:subClassOf [] ;
  rdfs:subClassOf [] ;
  rdfs:subClassOf [] ;
  rdfs:subClassOf [] ;
  rdfs:subClassOf [] ;
  rdfs:subClassOf [] ;
  rdfs:subClassOf [] ;
  rdfs:subClassOf [] ;
  rdfs:subClassOf [] ;
  rdfs:subClassOf [] ;
.
JSON
{"resource":"Quantity Kind Dimension Vector" 
 ,"qname":"qudt:QuantityKindDimensionVector" 
 ,"uri":"http:\/\/qudt.org\/schema\/qudt\/QuantityKindDimensionVector" 
 ,"properties":["comment":"&lt;p class=\"lm-para\"&gt;A  &lt;em&gt;Quantity Kind Dimension Vector&lt;\/em&gt; describes the dimensionality of a quantity kind in the context of a system of units. In the SI system of units, the dimensions of a quantity kind are expressed as a product of the basic physical dimensions mass (\\(M\\)), length (\\(L\\)), time (\\(T\\)) current (\\(I\\)), amount of substance (\\(N\\)), luminous intensity (\\(J\\)) and absolute temperature (\\(\\theta\\)) as \\(dim \\, Q = L^{\\alpha} \\, M^{\\beta} \\, T^{\\gamma} \\, I ^{\\delta} \\, \\theta ^{\\epsilon} \\, N^{\\eta} \\, J ^{\\nu}\\).&lt;\/p&gt;\n\n&lt;p class=\"lm-para\"&gt;The rational powers of the dimensional exponents, \\(\\alpha, \\, \\beta, \\, \\gamma, \\, \\delta, \\, \\epsilon, \\, \\eta, \\, \\nu\\), are positive, negative, or zero.&lt;\/p&gt;\n\n&lt;p class=\"lm-para\"&gt;For example, the dimension of the physical quantity kind \\(\\it{speed}\\) is \\(\\boxed{length\/time}\\), \\(L\/T\\) or \\(LT^{-1}\\), and the dimension of the physical quantity kind force is \\(\\boxed{mass \\times acceleration}\\) or \\(\\boxed{mass \\times (length\/time)\/time}\\), \\(ML\/T^2\\) or \\(MLT^{-2}\\) respectively.&lt;\/p&gt;" 
    ,"informative reference":"http:\/\/en.wikipedia.org\/wiki\/Dimensional_analysis" 
    ,"informative reference":"http:\/\/web.mit.edu\/2.25\/www\/pdf\/DA_unified.pdf" 
    ,"isDefinedBy":"&lt;http:\/\/qudt.org\/2.1\/schema\/qudt&gt;" 
    ,"label":"Quantity Kind Dimension Vector" 
    ,"subClassOf":null 
    ,"subClassOf":null 
    ,"subClassOf":null 
    ,"subClassOf":null 
    ,"subClassOf":null 
    ,"subClassOf":null 
    ,"subClassOf":null 
    ,"subClassOf":null 
    ,"subClassOf":null 
    ,"subClassOf":null 
    ,"subClassOf":"qudt:Concept" 
    ,"type":"owl:Class" 
    ]}
JSON-LD
{
  "@id" : "http://qudt.org/schema/qudt/QuantityKindDimensionVector",
  "@type" : "owl:Class",
  "informativeReference" : [ "http://en.wikipedia.org/wiki/Dimensional_analysis", "http://web.mit.edu/2.25/www/pdf/DA_unified.pdf" ],
  "comment" : "<p class=\"lm-para\">A  <em>Quantity Kind Dimension Vector</em> describes the dimensionality of a quantity kind in the context of a system of units. In the SI system of units, the dimensions of a quantity kind are expressed as a product of the basic physical dimensions mass (\\(M\\)), length (\\(L\\)), time (\\(T\\)) current (\\(I\\)), amount of substance (\\(N\\)), luminous intensity (\\(J\\)) and absolute temperature (\\(\\theta\\)) as \\(dim \\, Q = L^{\\alpha} \\, M^{\\beta} \\, T^{\\gamma} \\, I ^{\\delta} \\, \\theta ^{\\epsilon} \\, N^{\\eta} \\, J ^{\\nu}\\).</p>\n\n<p class=\"lm-para\">The rational powers of the dimensional exponents, \\(\\alpha, \\, \\beta, \\, \\gamma, \\, \\delta, \\, \\epsilon, \\, \\eta, \\, \\nu\\), are positive, negative, or zero.</p>\n\n<p class=\"lm-para\">For example, the dimension of the physical quantity kind \\(\\it{speed}\\) is \\(\\boxed{length/time}\\), \\(L/T\\) or \\(LT^{-1}\\), and the dimension of the physical quantity kind force is \\(\\boxed{mass \\times acceleration}\\) or \\(\\boxed{mass \\times (length/time)/time}\\), \\(ML/T^2\\) or \\(MLT^{-2}\\) respectively.</p>",
  "isDefinedBy" : "http://qudt.org/2.1/schema/qudt",
  "label" : "Quantity Kind Dimension Vector",
  "subClassOf" : [ "_:b0", "http://qudt.org/schema/qudt/Concept", "_:b1", "_:b2", "_:b3", "_:b4", "_:b5", "_:b6", "_:b7", "_:b8", "_:b9" ],
  "@context" : {
    "subClassOf" : {
      "@id" : "http://www.w3.org/2000/01/rdf-schema#subClassOf",
      "@type" : "@id"
    },
    "informativeReference" : {
      "@id" : "http://qudt.org/schema/qudt/informativeReference",
      "@type" : "http://www.w3.org/2001/XMLSchema#anyURI"
    },
    "label" : {
      "@id" : "http://www.w3.org/2000/01/rdf-schema#label"
    },
    "isDefinedBy" : {
      "@id" : "http://www.w3.org/2000/01/rdf-schema#isDefinedBy",
      "@type" : "@id"
    },
    "comment" : {
      "@id" : "http://www.w3.org/2000/01/rdf-schema#comment",
      "@type" : "http://www.w3.org/1999/02/22-rdf-syntax-ns#HTML"
    },
    "rdf" : "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
    "owl" : "http://www.w3.org/2002/07/owl#",
    "xsd" : "http://www.w3.org/2001/XMLSchema#",
    "rdfs" : "http://www.w3.org/2000/01/rdf-schema#"
  }
}

Generated 2021-04-07T16:28:48.821-07:00 by lmdoc version 1.1 with  TopBraid SPARQL Web Pages (SWP)