rdf:type |
qudt:QuantityKind |
dcterms:description |
The Hamilton–Jacobi equation (HJE) is a necessary condition describing extremal geometry in generalizations of problems from the calculus of variations. |
qudt:applicableUnit |
|
qudt:hasDimensionVector |
qkdv:A0E0L2I0M1H0T-2D0 |
qudt:informativeReference |
http://en.wikipedia.org/wiki/Hamilton–Jacobi_equation |
qudt:isoNormativeReference |
http://www.iso.org/iso/catalogue_detail?csnumber=31889 |
qudt:latexDefinition |
\(H = \sum p_i\dot{q_i} - L\), where \(p_i\) is a generalized momentum, \(\dot{q_i}\) is a generalized velocity, and \(L\) is the Lagrange function. |
qudt:plainTextDescription |
“The Hamilton–Jacobi equation (HJE) is a necessary condition describing extremal geometry in generalizations of problems from the calculus of variations.” |
qudt:symbol |
“H” |
rdfs:comment |
“Applicable units are those of quantitykind:HamiltonFunction” |
rdfs:isDefinedBy |
http://qudt.org/3.1.10/vocab/quantitykind |
rdfs:label |
“Hamilton Function”@en |