quantitykind:HamiltonFunction

PredicateObject
rdf:type qudt:QuantityKind
dcterms:description The Hamilton–Jacobi equation (HJE) is a necessary condition describing extremal geometry in generalizations of problems from the calculus of variations.
qudt:applicableUnit
qudt:hasDimensionVector qkdv:A0E0L2I0M1H0T-2D0
qudt:informativeReference http://en.wikipedia.org/wiki/Hamilton–Jacobi_equation
qudt:isoNormativeReference http://www.iso.org/iso/catalogue_detail?csnumber=31889
qudt:latexDefinition \(H = \sum p_i\dot{q_i} - L\), where \(p_i\) is a generalized momentum, \(\dot{q_i}\) is a generalized velocity, and \(L\) is the Lagrange function.
qudt:plainTextDescription “The Hamilton–Jacobi equation (HJE) is a necessary condition describing extremal geometry in generalizations of problems from the calculus of variations.”
qudt:symbol “H”
rdfs:comment “Applicable units are those of quantitykind:HamiltonFunction”
rdfs:isDefinedBy http://qudt.org/3.1.10/vocab/quantitykind
rdfs:label “Hamilton Function”@en
Generated 2026-01-15T09:03:10.866-05:00