This version: 2.1
Latest published version: http://www.qudt.org/doc/2022/06/DOC_VOCAB-QUANTITY-KINDS-ALL-v2.1.html
Previous published version: http://www.qudt.org/doc/2022/04/DOC_VOCAB-QUANTITY-KINDS-ALL-v2.1.html
Editor: Ralph Hodgson, TopQuadrant, Inc
Contributors: Jack Hodges, Steve Ray
Last Modified: 2022-06-29T18:12:04.544-04:00
Copyright © 2011 - 2022 qudt.org , All Rights Reserved.
Generated by SWP using lmdoc version 1.1
Provides the set of all quantity kinds.
The namespace prefix for resources in this ontology is: quantitykind
The vocabulary graph
is available as:
Turtle
A list of graphs imported by http://qudt.org/2.1/vocab/quantitykind is shown below.
Graph URI | Intent |
---|---|
http://qudt.org/2.1/schema/facade/qudt | |
http://qudt.org/2.1/vocab/dimensionvector | TBD |
The graph uses 19 resources from other graphs that are not imported, as listed below:
The main namespace for resources in this graph is http://qudt.org/vocab/quantitykind/
with the prefix quantitykind
.
No Classes defined in this graph
No Properties defined in this graph
The graph defines, or extends, 878 instances, as indexed below:
No restricted datatypes defined in this graph
quantitykind:AbsoluteActivity
URI: http://qudt.org/vocab/quantitykind/AbsoluteActivity
The "Absolute Activity" is the exponential of the ratio of the chemical potential to \(RT\) where \(R\) is the gas constant and \(T\) the thermodynamic temperature.
quantitykind:AbsoluteHumidity
URI: http://qudt.org/vocab/quantitykind/AbsoluteHumidity
"Absolute Humidity" is an amount of water vapor, usually discussed per unit volume. Absolute humidity in air ranges from zero to roughly 30 grams per cubic meter when the air is saturated at \(30 ^\circ C\). The absolute humidity changes as air temperature or pressure changes. This is very inconvenient for chemical engineering calculations, e.g. for clothes dryers, where temperature can vary considerably. As a result, absolute humidity is generally defined in chemical engineering as mass of water vapor per unit mass of dry air, also known as the mass mixing ratio, which is much more rigorous for heat and mass balance calculations. Mass of water per unit volume as in the equation above would then be defined as volumetric humidity. Because of the potential confusion.
quantitykind:AbsorbedDose
URI: http://qudt.org/vocab/quantitykind/AbsorbedDose
"Absorbed Dose" (also known as Total Ionizing Dose, TID) is a measure of the energy deposited in a medium by ionizing radiation. It is equal to the energy deposited per unit mass of medium, and so has the unit \(J/kg\), which is given the special name Gray (\(Gy\)).
Note that the absorbed dose is not a good indicator of the likely biological effect. 1 Gy of alpha radiation would be much more biologically damaging than 1 Gy of photon radiation for example. Appropriate weighting factors can be applied reflecting the different relative biological effects to find the equivalent dose. The risk of stoctic effects due to radiation exposure can be quantified using the effective dose, which is a weighted average of the equivalent dose to each organ depending upon its radiosensitivity. When ionising radiation is used to treat cancer, the doctor will usually prescribe the radiotherapy treatment in Gy. When risk from ionising radiation is being discussed, a related unit, the Sievert is used.
quantitykind:AbsorbedDoseRate
URI: http://qudt.org/vocab/quantitykind/AbsorbedDoseRate
quantitykind:Acceleration
URI: http://qudt.org/vocab/quantitykind/Acceleration
Acceleration is the (instantaneous) rate of change of velocity. Acceleration may be either linear acceleration, or angular acceleration. It is a vector quantity with dimension \(length/time^{2}\) for linear acceleration, or in the case of angular acceleration, with dimension \(angle/time^{2}\). In SI units, linear acceleration is measured in \(meters/second^{2}\) (\(m \cdot s^{-2}\)) and angular acceleration is measured in \(radians/second^{2}\). In physics, any increase or decrease in speed is referred to as acceleration and similarly, motion in a circle at constant speed is also an acceleration, since the direction component of the velocity is changing.
quantitykind:AccelerationOfGravity
URI: http://qudt.org/vocab/quantitykind/AccelerationOfGravity
quantitykind:AcceptorDensity
URI: http://qudt.org/vocab/quantitykind/AcceptorDensity
quantitykind:AcceptorIonizationEnergy
URI: http://qudt.org/vocab/quantitykind/AcceptorIonizationEnergy
"Acceptor Ionization Energy" is the ionization energy of an acceptor.
quantitykind:AcousticImpedance
URI: http://qudt.org/vocab/quantitykind/AcousticImpedance
quantitykind:ActionTime
URI: http://qudt.org/vocab/quantitykind/ActionTime
Action Time (sec)
quantitykind:ActivePower
URI: http://qudt.org/vocab/quantitykind/ActivePower
\(Active Power\) is, under periodic conditions, the mean value, taken over one period \(T\), of the instantaneous power \(p\). In complex notation, \(P = \mathbf{Re} \; \underline{S}\), where \(\underline{S}\) is \(\textit{complex power}\)".
quantitykind:Activity
URI: http://qudt.org/vocab/quantitykind/Activity
"Activity" is the number of decays per unit time of a radioactive sample, the term used to characterise the number of nuclei which disintegrate in a radioactive substance per unit time. Activity is usually measured in Becquerels (\(Bq\)), where 1 \(Bq\) is 1 disintegration per second, in honor of the scientist Henri Becquerel.
quantitykind:ActivityCoefficient
URI: http://qudt.org/vocab/quantitykind/ActivityCoefficient
quantitykind:ActivityConcentration
URI: http://qudt.org/vocab/quantitykind/ActivityConcentration
quantitykind:ActivityThresholds
URI: http://qudt.org/vocab/quantitykind/ActivityThresholds
quantitykind:Admittance
URI: http://qudt.org/vocab/quantitykind/Admittance
"Admittance" is a measure of how easily a circuit or device will allow a current to flow. It is defined as the inverse of the impedance (\(Z\)).
quantitykind:AlphaDisintegrationEnergy
URI: http://qudt.org/vocab/quantitykind/AlphaDisintegrationEnergy
The "Alpha Disintegration Energy" is the sum of the kinetic energy of the \(\alpha\)-particle produced in the disintegration process and the recoil energy of the product atom in the reference frame in which the emitting nucleus is at rest before its disintegration.
quantitykind:AmbientPressure
URI: http://qudt.org/vocab/quantitykind/AmbientPressure
The ambient pressure on an object is the pressure of the surrounding medium, such as a gas or liquid, which comes into contact with the object. The SI unit of pressure is the pascal (Pa), which is a very small unit relative to atmospheric pressure on Earth, so kilopascals (\(kPa\)) are more commonly used in this context.
quantitykind:AmountOfSubstance
URI: http://qudt.org/vocab/quantitykind/AmountOfSubstance
"Amount of Substance" is a standards-defined quantity that measures the size of an ensemble of elementary entities, such as atoms, molecules, electrons, and other particles. It is sometimes referred to as chemical amount. The International System of Units (SI) defines the amount of substance to be proportional to the number of elementary entities present. The SI unit for amount of substance is \(mole\). It has the unit symbol \(mol\). The mole is defined as the amount of substance that contains an equal number of elementary entities as there are atoms in 0.012kg of the isotope carbon-12. This number is called Avogadro's number and has the value \(6.02214179(30) \times 10^{23}\). The only other unit of amount of substance in current use is the \(pound-mole\) with the symbol \(lb-mol\), which is sometimes used in chemical engineering in the United States. One \(pound-mole\) is exactly \(453.59237 mol\).
quantitykind:AmountOfSubstanceConcentrationOfB
URI: http://qudt.org/vocab/quantitykind/AmountOfSubstanceConcentrationOfB
quantitykind:AmountOfSubstanceFractionOfB
URI: http://qudt.org/vocab/quantitykind/AmountOfSubstanceFractionOfB
quantitykind:AmountOfSubstancePerUnitMass
URI: http://qudt.org/vocab/quantitykind/AmountOfSubstancePerUnitMass
quantitykind:AmountOfSubstancePerUnitMassPressure
URI: http://qudt.org/vocab/quantitykind/AmountOfSubstancePerUnitMassPressure
quantitykind:AmountOfSubstancePerUnitVolume
URI: http://qudt.org/vocab/quantitykind/AmountOfSubstancePerUnitVolume
quantitykind:Angle
URI: http://qudt.org/vocab/quantitykind/Angle
The abstract notion of angle. Narrow concepts include plane angle and solid angle. While both plane angle and solid angle are dimensionless, they are actually length/length and area/area respectively.
quantitykind:AngleOfOpticalRotation
URI: http://qudt.org/vocab/quantitykind/AngleOfOpticalRotation
quantitykind:AngularAcceleration
URI: http://qudt.org/vocab/quantitykind/AngularAcceleration
Angular acceleration is the rate of change of angular velocity over time. Measurement of the change made in the rate of change of an angle that a spinning object undergoes per unit time. It is a vector quantity. Also called Rotational acceleration. In SI units, it is measured in radians per second squared (\(rad/s^2\)), and is usually denoted by the Greek letter alpha.
quantitykind:AngularCrossSection
URI: http://qudt.org/vocab/quantitykind/AngularCrossSection
"Angular Cross-section" is the cross-section for ejecting or scattering a particle into an elementary cone, divided by the solid angle \(d\Omega\) of that cone.
quantitykind:AngularDistance
URI: http://qudt.org/vocab/quantitykind/AngularDistance
quantitykind:AngularFrequency
URI: http://qudt.org/vocab/quantitykind/AngularFrequency
"Angular frequency", symbol \(\omega\) (also referred to by the terms angular speed, radial frequency, circular frequency, orbital frequency, radian frequency, and pulsatance) is a scalar measure of rotation rate. Angular frequency (or angular speed) is the magnitude of the vector quantity angular velocity.
quantitykind:AngularImpulse
URI: http://qudt.org/vocab/quantitykind/AngularImpulse
The Angular Impulse, also known as angular momentum, is the moment of linear momentum around a point. It is defined as\(H = \int Mdt\), where \(M\) is the moment of force and \(t\) is time.
quantitykind:AngularMomentum
URI: http://qudt.org/vocab/quantitykind/AngularMomentum
quantitykind:AngularMomentumPerAngle
URI: http://qudt.org/vocab/quantitykind/AngularMomentumPerAngle
quantitykind:AngularReciprocalLatticeVector
URI: http://qudt.org/vocab/quantitykind/AngularReciprocalLatticeVector
"Angular Reciprocal Lattice Vector" is a vector whose scalar products with all fundamental lattice vectors are integral multiples of \(2\pi\).
quantitykind:AngularVelocity
URI: http://qudt.org/vocab/quantitykind/AngularVelocity
Angular Velocity refers to how fast an object rotates or revolves relative to another point.
quantitykind:AngularWavenumber
URI: http://qudt.org/vocab/quantitykind/AngularWavenumber
quantitykind:ApparentPower
URI: http://qudt.org/vocab/quantitykind/ApparentPower
"Apparent Power" is the product of the rms voltage \(U\) between the terminals of a two-terminal element or two-terminal circuit and the rms electric current I in the element or circuit. Under sinusoidal conditions, the apparent power is the modulus of the complex power.
quantitykind:AreaTemperature
URI: http://qudt.org/vocab/quantitykind/AreaTemperature
quantitykind:AreaThermalExpansion
URI: http://qudt.org/vocab/quantitykind/AreaThermalExpansion
quantitykind:AreaTimeTemperature
URI: http://qudt.org/vocab/quantitykind/AreaTimeTemperature
quantitykind:AreicHeatFlowRate
URI: http://qudt.org/vocab/quantitykind/AreicHeatFlowRate
quantitykind:AtmosphericHydroxylationRate
URI: http://qudt.org/vocab/quantitykind/AtmosphericHydroxylationRate
quantitykind:AtmosphericPressure
URI: http://qudt.org/vocab/quantitykind/AtmosphericPressure
The pressure exerted by the weight of the air above it at any point on the earth's surface. At sea level the atmosphere will support a column of mercury about \(760 mm\) high. This decreases with increasing altitude. The standard value for the atmospheric pressure at sea level in SI units is \(101,325 pascals\).
quantitykind:AtomScatteringFactor
URI: http://qudt.org/vocab/quantitykind/AtomScatteringFactor
quantitykind:AtomicAttenuationCoefficient
URI: http://qudt.org/vocab/quantitykind/AtomicAttenuationCoefficient
quantitykind:AttenuationCoefficient
URI: http://qudt.org/vocab/quantitykind/AttenuationCoefficient
quantitykind:AuditoryThresholds
URI: http://qudt.org/vocab/quantitykind/AuditoryThresholds
quantitykind:AuxillaryMagneticField
URI: http://qudt.org/vocab/quantitykind/AuxillaryMagneticField
quantitykind:AverageEnergyLossPerElementaryChargeProduced
URI: http://qudt.org/vocab/quantitykind/AverageEnergyLossPerElementaryChargeProduced
quantitykind:AverageHeadEndPressure
URI: http://qudt.org/vocab/quantitykind/AverageHeadEndPressure
quantitykind:AverageLogarithmicEnergyDecrement
URI: http://qudt.org/vocab/quantitykind/AverageLogarithmicEnergyDecrement
quantitykind:AverageSpecificImpulse
URI: http://qudt.org/vocab/quantitykind/AverageSpecificImpulse
Avg Specific Impulse (lbf-sec/lbm)
quantitykind:AverageVacuumThrust
URI: http://qudt.org/vocab/quantitykind/AverageVacuumThrust
quantitykind:BendingMomentOfForce
URI: http://qudt.org/vocab/quantitykind/BendingMomentOfForce
quantitykind:BetaDisintegrationEnergy
URI: http://qudt.org/vocab/quantitykind/BetaDisintegrationEnergy
quantitykind:BevelGearPitchAngle
URI: http://qudt.org/vocab/quantitykind/BevelGearPitchAngle
quantitykind:BindingFraction
URI: http://qudt.org/vocab/quantitykind/BindingFraction
quantitykind:BioconcentrationFactor
URI: http://qudt.org/vocab/quantitykind/BioconcentrationFactor
quantitykind:BiodegredationHalfLife
URI: http://qudt.org/vocab/quantitykind/BiodegredationHalfLife
quantitykind:BloodGlucoseLevel
URI: http://qudt.org/vocab/quantitykind/BloodGlucoseLevel
The blood sugar level, blood sugar concentration, or blood glucose level is the amount of glucose present in the blood of humans and other animals. Glucose is a simple sugar and approximately 4 grams of glucose are present in the blood of humans at all times. The body tightly regulates blood glucose levels as a part of metabolic homeostasis. Glucose is stored in skeletal muscle and liver cells in the form of glycogen;[2] in fasted individuals, blood glucose is maintained at a constant level at the expense of glycogen stores in the liver and skeletal muscle. [Wikipedia] \(\\\) There are two main methods of describing concentrations: by weight, and by molecular count. Weights are in grams, molecular counts in moles. A mole is \(6.022\times 10^{23}\) molecules.) In both cases, the unit is usually modified by \(milli-\) or \(micro-\) or other prefix, and is always \(per\) some volume, often a liter. Conversion factors depend on the molecular weight of the substance in question. \(\\\) \(mmol/L\) is millimoles/liter, and is the world standard unit for measuring glucose in blood. Specifically, it is the designated SI (Systeme International) unit. 'World standard' is not universal; not only the US but a number of other countries use mg/dl. A mole is about \(6\times 10^{23}\) molecules. \(\\\) \(mg/dL\) (milligrams/deciliter) is the traditional unit for measuring bG (blood glucose). There is a trend toward using \(mmol/L\) however mg/dL is much in practice. Some use is made of \(mmol/L\) as the primary unit with \(mg/dL\) quoted in parentheses. This acknowledges the large base of health care providers, researchers and patients who are already familiar with \(mg/dL|).
citation: https://en.wikipedia.org/wiki/Blood_sugar_level
quantitykind:BloodGlucoseLevel_Mass
URI: http://qudt.org/vocab/quantitykind/BloodGlucoseLevel_Mass
The blood sugar level, blood sugar concentration, or blood glucose level is the amount of glucose present in the blood of humans and other animals. Glucose is a simple sugar and approximately 4 grams of glucose are present in the blood of humans at all times. The body tightly regulates blood glucose levels as a part of metabolic homeostasis. Glucose is stored in skeletal muscle and liver cells in the form of glycogen;[2] in fasted individuals, blood glucose is maintained at a constant level at the expense of glycogen stores in the liver and skeletal muscle. [Wikipedia] \(\\\) There are two main methods of describing concentrations: by weight, and by molecular count. Weights are in grams, molecular counts in moles. A mole is \(6.022\times 10^{23}\) molecules.) In both cases, the unit is usually modified by \(milli-\) or \(micro-\) or other prefix, and is always \(per\) some volume, often a liter. Conversion factors depend on the molecular weight of the substance in question. \(\\\) \(mmol/L\) is millimoles/liter, and is the world standard unit for measuring glucose in blood. Specifically, it is the designated SI (Systeme International) unit. 'World standard' is not universal; not only the US but a number of other countries use mg/dl. A mole is about \(6\times 10^{23}\) molecules. \(\\\) \(mg/dL\) (milligrams/deciliter) is the traditional unit for measuring bG (blood glucose). There is a trend toward using \(mmol/L\) however mg/dL is much in practice. Some use is made of \(mmol/L\) as the primary unit with \(mg/dL\) quoted in parentheses. This acknowledges the large base of health care providers, researchers and patients who are already familiar with \(mg/dL|).
citation: https://en.wikipedia.org/wiki/Blood_sugar_level
quantitykind:BodyMassIndex
URI: http://qudt.org/vocab/quantitykind/BodyMassIndex
\(\textit{Body Mass Index}\), BMI, is an index of weight for height, calculated as: \(BMI = \frac{M_{body}}{H}\), where \(M_{body}\) is body mass in kg, and \(H\) is height in metre. The BMI has been used as a guideline for defining whether a person is overweight because it minimizes the effect of height, but it does not take into consideration other important factors, such as age and body build. The BMI has also been used as an indicator of obesity on the assumption that the higher the index, the greater the level of body fat.
quantitykind:CENTER-OF-GRAVITY_X
URI: http://qudt.org/vocab/quantitykind/CENTER-OF-GRAVITY_X
quantitykind:CENTER-OF-GRAVITY_Y
URI: http://qudt.org/vocab/quantitykind/CENTER-OF-GRAVITY_Y
quantitykind:CENTER-OF-GRAVITY_Z
URI: http://qudt.org/vocab/quantitykind/CENTER-OF-GRAVITY_Z
quantitykind:CONTRACT-END-ITEM-SPECIFICATION-MASS
URI: http://qudt.org/vocab/quantitykind/CONTRACT-END-ITEM-SPECIFICATION-MASS
quantitykind:CanonicalPartitionFunction
URI: http://qudt.org/vocab/quantitykind/CanonicalPartitionFunction
quantitykind:CarrierLifetime
URI: http://qudt.org/vocab/quantitykind/CarrierLifetime
quantitykind:CartesianCoordinates
URI: http://qudt.org/vocab/quantitykind/CartesianCoordinates
quantitykind:CartesianVolume
URI: http://qudt.org/vocab/quantitykind/CartesianVolume
quantitykind:CatalyticActivity
URI: http://qudt.org/vocab/quantitykind/CatalyticActivity
An index of the actual or potential activity of a catalyst. The catalytic activity of an enzyme or an enzyme-containing preparation is defined as the property measured by the increase in the rate of conversion of a specified chemical reaction that the enzyme produces in a specified assay system. Catalytic activity is an extensive quantity and is a property of the enzyme, not of the reaction mixture; it is thus conceptually different from rate of conversion although measured by and equidimensional with it. The unit for catalytic activity is the \(katal\); it may also be expressed in mol \(s^{-1}\). Dimensions: \(N T^{-1}\). Former terms such as catalytic ability, catalytic amount, and enzymic activity are no er recommended. Derived quantities are molar catalytic activity, specific catalytic activity, and catalytic activity concentration. Source(s): www.answers.com
quantitykind:CelsiusTemperature
URI: http://qudt.org/vocab/quantitykind/CelsiusTemperature
quantitykind:CharacteristicAcousticImpedance
URI: http://qudt.org/vocab/quantitykind/CharacteristicAcousticImpedance
Characteristic impedance at a point in a non-dissipative medium and for a plane progressive wave, the quotient of the sound pressure \(p\) by the component of the sound particle velocity \(v\) in the direction of the wave propagation.
quantitykind:CharacteristicVelocity
URI: http://qudt.org/vocab/quantitykind/CharacteristicVelocity
Characteristic velocity or \(c^{*}\) is a measure of the combustion performance of a rocket engine independent of nozzle performance, and is used to compare different propellants and propulsion systems.
quantitykind:ChemicalAffinity
URI: http://qudt.org/vocab/quantitykind/ChemicalAffinity
quantitykind:ChemicalPotential
URI: http://qudt.org/vocab/quantitykind/ChemicalPotential
quantitykind:ClosestApproachRadius
URI: http://qudt.org/vocab/quantitykind/ClosestApproachRadius
quantitykind:CoefficientOfHeatTransfer
URI: http://qudt.org/vocab/quantitykind/CoefficientOfHeatTransfer
quantitykind:Coercivity
URI: http://qudt.org/vocab/quantitykind/Coercivity
\(\textit{Coercivity}\), also referred to as \(\textit{Coercive Field Strength}\), is the magnetic field strength to be applied to bring the magnetic flux density in a substance from its remaining magnetic flux density to zero. This is defined as the coercive field strength in a substance when either the magnetic flux density or the magnetic polarization and magnetization is brought from its value at magnetic saturation to zero by monotonic reduction of the applied magnetic field strength. The quantity which is brought to zero should be stated, and the appropriate symbol used: \(H_{cB}\), \(H_{cJ}\) or \(H_{cM}\) for the coercivity relating to the magnetic flux density, the magnetic polarization or the magnetization respectively, where \(H_{cJ} = H_{cM}\).
quantitykind:CoherenceLength
URI: http://qudt.org/vocab/quantitykind/CoherenceLength
quantitykind:ColdReceptorThreshold
URI: http://qudt.org/vocab/quantitykind/ColdReceptorThreshold
quantitykind:CombinedNonEvaporativeHeatTransferCoefficient
URI: http://qudt.org/vocab/quantitykind/CombinedNonEvaporativeHeatTransferCoefficient
quantitykind:CombustionChamberTemperature
URI: http://qudt.org/vocab/quantitykind/CombustionChamberTemperature
quantitykind:ComplexPower
URI: http://qudt.org/vocab/quantitykind/ComplexPower
"Complex Power", under sinusoidal conditions, is the product of the phasor \(U\) representing the voltage between the terminals of a linear two-terminal element or two-terminal circuit and the complex conjugate of the phasor \(I\) representing the electric current in the element or circuit.
quantitykind:Compressibility
URI: http://qudt.org/vocab/quantitykind/Compressibility
quantitykind:CompressibilityFactor
URI: http://qudt.org/vocab/quantitykind/CompressibilityFactor
The compressibility factor (\(Z\)) is a useful thermodynamic property for modifying the ideal gas law to account for the real gas behaviour. The closer a gas is to a phase change, the larger the deviations from ideal behavior. It is simply defined as the ratio of the molar volume of a gas to the molar volume of an ideal gas at the same temperature and pressure. Values for compressibility are calculated using equations of state (EOS), such as the virial equation and van der Waals equation. The compressibility factor for specific gases can be obtained, with out calculation, from compressibility charts. These charts are created by plotting Z as a function of pressure at constant temperature.
quantitykind:Conductance
URI: http://qudt.org/vocab/quantitykind/Conductance
\(\textit{Conductance}\), for a resistive two-terminal element or two-terminal circuit with terminals A and B, quotient of the electric current i in the element or circuit by the voltage \(u_{AB}\) between the terminals: \(G = \frac{1}{R}\), where the electric current is taken as positive if its direction is from A to B and negative in the opposite case. The conductance of an element or circuit is the inverse of its resistance.
quantitykind:ConductionSpeed
URI: http://qudt.org/vocab/quantitykind/ConductionSpeed
quantitykind:ConductiveHeatTransferRate
URI: http://qudt.org/vocab/quantitykind/ConductiveHeatTransferRate
quantitykind:ConvectiveHeatTransfer
URI: http://qudt.org/vocab/quantitykind/ConvectiveHeatTransfer
quantitykind:CrossSectionalArea
URI: http://qudt.org/vocab/quantitykind/CrossSectionalArea
quantitykind:CubicElectricDipoleMomentPerSquareEnergy
URI: http://qudt.org/vocab/quantitykind/CubicElectricDipoleMomentPerSquareEnergy
quantitykind:CubicExpansionCoefficient
URI: http://qudt.org/vocab/quantitykind/CubicExpansionCoefficient
quantitykind:CurieTemperature
URI: http://qudt.org/vocab/quantitykind/CurieTemperature
quantitykind:Curvature
URI: http://qudt.org/vocab/quantitykind/Curvature
The canonical example of extrinsic curvature is that of a circle, which has curvature equal to the inverse of its radius everywhere. Smaller circles bend more sharply, and hence have higher curvature. The curvature of a smooth curve is defined as the curvature of its osculating circle at each point. The osculating circle of a sufficiently smooth plane curve at a given point on the curve is the circle whose center lies on the inner normal line and whose curvature is the same as that of the given curve at that point. This circle is tangent to the curve at the given point. The magnitude of curvature at points on physical curves can be measured in \(diopters\) (also spelled \(dioptre\)) — this is the convention in optics.
quantitykind:CurvatureFromRadius
URI: http://qudt.org/vocab/quantitykind/CurvatureFromRadius
quantitykind:CyclotronAngularFrequency
URI: http://qudt.org/vocab/quantitykind/CyclotronAngularFrequency
quantitykind:Debye-WallerFactor
URI: http://qudt.org/vocab/quantitykind/Debye-WallerFactor
quantitykind:DebyeAngularFrequency
URI: http://qudt.org/vocab/quantitykind/DebyeAngularFrequency
quantitykind:DebyeAngularWavenumber
URI: http://qudt.org/vocab/quantitykind/DebyeAngularWavenumber
quantitykind:DebyeTemperature
URI: http://qudt.org/vocab/quantitykind/DebyeTemperature
quantitykind:DegreeOfDissociation
URI: http://qudt.org/vocab/quantitykind/DegreeOfDissociation
quantitykind:Density
URI: http://qudt.org/vocab/quantitykind/Density
The mass density or density of a material is defined as its mass per unit volume. The symbol most often used for density is \(\rho\). Mathematically, density is defined as mass divided by volume: \(\rho = m/V\), where \(\rho\) is the density, \(m\) is the mass, and \(V\) is the volume. In some cases, density is also defined as its weight per unit volume, although this quantity is more properly called specific weight.
quantitykind:DensityInCombustionChamber
URI: http://qudt.org/vocab/quantitykind/DensityInCombustionChamber
quantitykind:DensityOfStates
URI: http://qudt.org/vocab/quantitykind/DensityOfStates
quantitykind:DensityOfTheExhaustGases
URI: http://qudt.org/vocab/quantitykind/DensityOfTheExhaustGases
quantitykind:DewPointTemperature
URI: http://qudt.org/vocab/quantitykind/DewPointTemperature
quantitykind:DiastolicBloodPressure
URI: http://qudt.org/vocab/quantitykind/DiastolicBloodPressure
quantitykind:DiffusionCoefficient
URI: http://qudt.org/vocab/quantitykind/DiffusionCoefficient
quantitykind:DiffusionCoefficientForFluenceRate
URI: http://qudt.org/vocab/quantitykind/DiffusionCoefficientForFluenceRate
quantitykind:DiffusionLength
URI: http://qudt.org/vocab/quantitykind/DiffusionLength
quantitykind:Dimensionless
URI: http://qudt.org/vocab/quantitykind/Dimensionless
In dimensional analysis, a dimensionless quantity or quantity of dimension one is a quantity without an associated physical dimension. It is thus a "pure" number, and as such always has a dimension of 1. Dimensionless quantities are widely used in mathematics, physics, engineering, economics, and in everyday life (such as in counting). Numerous well-known quantities, such as \(\pi\), \(\epsilon\), and \(\psi\), are dimensionless. By contrast, non-dimensionless quantities are measured in units of length, area, time, etc. Dimensionless quantities are often defined as products or ratios of quantities that are not dimensionless, but whose dimensions cancel out when their powers are multiplied.
quantitykind:DimensionlessRatio
URI: http://qudt.org/vocab/quantitykind/DimensionlessRatio
quantitykind:DisplacementCurrent
URI: http://qudt.org/vocab/quantitykind/DisplacementCurrent
quantitykind:DisplacementCurrentDensity
URI: http://qudt.org/vocab/quantitykind/DisplacementCurrentDensity
\(\textbf{Displacement Current Density}\) is the time rate of change of the \(\textit{Electric Flux Density}\). This is a measure of how quickly the electric field changes if we observe it as a function of time. This is different than if we look at how the electric field changes spatially, that is, over a region of space for a fixed amount of time.
quantitykind:DisplacementVectorOfIon
URI: http://qudt.org/vocab/quantitykind/DisplacementVectorOfIon
quantitykind:DistanceTraveledDuringBurn
URI: http://qudt.org/vocab/quantitykind/DistanceTraveledDuringBurn
quantitykind:DonorIonizationEnergy
URI: http://qudt.org/vocab/quantitykind/DonorIonizationEnergy
quantitykind:DoseEquivalent
URI: http://qudt.org/vocab/quantitykind/DoseEquivalent
"Dose Equivalent} (former), or \textit{Equivalent Absorbed Radiation Dose}, usually shortened to \textit{Equivalent Dose", is a computed average measure of the radiation absorbed by a fixed mass of biological tissue, that attempts to account for the different biological damage potential of different types of ionizing radiation. The equivalent dose to a tissue is found by multiplying the absorbed dose, in gray, by a dimensionless "quality factor" \(Q\), dependent upon radiation type, and by another dimensionless factor \(N\), dependent on all other pertinent factors. N depends upon the part of the body irradiated, the time and volume over which the dose was spread, even the species of the subject.
quantitykind:DoseEquivalentQualityFactor
URI: http://qudt.org/vocab/quantitykind/DoseEquivalentQualityFactor
quantitykind:DragCoefficient
URI: http://qudt.org/vocab/quantitykind/DragCoefficient
quantitykind:DryVolume
URI: http://qudt.org/vocab/quantitykind/DryVolume
Dry measures are units of volume used to measure bulk commodities which are not gas or liquid. They are typically used in agriculture, agronomy, and commodity markets to measure grain, dried beans, and dried and fresh fruit; formerly also salt pork and fish. They are also used in fishing for clams, crabs, etc. and formerly for many other substances (for example coal, cement, lime) which were typically shipped and delivered in a standardized container such as a barrel. In the original metric system, the unit of dry volume was the stere, but this is not part of the modern metric system; the liter and the cubic meter (\(m^{3}\)) are now used. However, the stere is still widely used for firewood.
quantitykind:DynamicFriction
URI: http://qudt.org/vocab/quantitykind/DynamicFriction
quantitykind:DynamicFrictionCoefficient
URI: http://qudt.org/vocab/quantitykind/DynamicFrictionCoefficient
quantitykind:DynamicPressure
URI: http://qudt.org/vocab/quantitykind/DynamicPressure
Dynamic Pressure (indicated with q, or Q, and sometimes called velocity pressure) is the quantity defined by: \(q = 1/2 * \rho v^{2}\), where (using SI units), \(q\) is dynamic pressure in \(pascals\), \(\rho\) is fluid density in \(kg/m^{3}\) (for example, density of air) and \(v \) is fluid velocity in \(m/s\).
quantitykind:DynamicViscosity
URI: http://qudt.org/vocab/quantitykind/DynamicViscosity
quantitykind:EarthClosestApproachVehicleVelocity
URI: http://qudt.org/vocab/quantitykind/EarthClosestApproachVehicleVelocity
quantitykind:EccentricityOfOrbit
URI: http://qudt.org/vocab/quantitykind/EccentricityOfOrbit
quantitykind:EffectiveExhaustVelocity
URI: http://qudt.org/vocab/quantitykind/EffectiveExhaustVelocity
quantitykind:EffectiveMultiplicationFactor
URI: http://qudt.org/vocab/quantitykind/EffectiveMultiplicationFactor
quantitykind:EinsteinTransitionProbability
URI: http://qudt.org/vocab/quantitykind/EinsteinTransitionProbability
Given two atomic states of energy \(E_j\) and \(E_k\). Let \(E_j > E_k\). Assume the atom is bathed in radiation of energy density \(u(w)\). Transitions between these states can take place in three different ways. Spontaneous, induced/stimulated emission, and induced absorption. \(A_jk\) represents the Einstein transition probability for spontaneous emission.
quantitykind:ElectricCharge
URI: http://qudt.org/vocab/quantitykind/ElectricCharge
"Electric Charge" is a fundamental conserved property of some subatomic particles, which determines their electromagnetic interaction. Electrically charged matter is influenced by, and produces, electromagnetic fields. The electric charge on a body may be positive or negative. Two positively charged bodies experience a mutual repulsive force, as do two negatively charged bodies. A positively charged body and a negatively charged body experience an attractive force. Electric charge is carried by discrete particles and can be positive or negative. The sign convention is such that the elementary electric charge \(e\), that is, the charge of the proton, is positive. The SI derived unit of electric charge is the coulomb.
quantitykind:ElectricChargeDensity
URI: http://qudt.org/vocab/quantitykind/ElectricChargeDensity
quantitykind:ElectricChargeLineDensity
URI: http://qudt.org/vocab/quantitykind/ElectricChargeLineDensity
In electromagnetism, charge density is a measure of electric charge per unit volume of space, in one, two or three dimensions. More specifically: the linear, surface, or volume charge density is the amount of electric charge per unit length, surface area, or volume, respectively. The respective SI units are \(C \cdot \), \(m^{-1}\), \(C \cdot m^{-2}\) or \(C \cdot m^{-3}\).
quantitykind:ElectricChargeLinearDensity
URI: http://qudt.org/vocab/quantitykind/ElectricChargeLinearDensity
quantitykind:ElectricChargePerAmountOfSubstance
URI: http://qudt.org/vocab/quantitykind/ElectricChargePerAmountOfSubstance
"Electric Charge Per Amount Of Substance" is the charge assocated with a given amount of substance. Un the ISO and SI systems this is \(1 mol\).
quantitykind:ElectricChargePerArea
URI: http://qudt.org/vocab/quantitykind/ElectricChargePerArea
In electromagnetism, charge density is a measure of electric charge per unit volume of space, in one, two or three dimensions. More specifically: the linear, surface, or volume charge density is the amount of electric charge per unit length, surface area, or volume, respectively. The respective SI units are \(C \cdot m^{-1}\), \(C \cdot m^{-2}\) or \(C \cdot m^{-3}\).
quantitykind:ElectricChargePerMass
URI: http://qudt.org/vocab/quantitykind/ElectricChargePerMass
"Electric Charge Per Mass" is the charge associated with a specific mass of a substance. In the SI and ISO systems this is \(1 kg\).
quantitykind:ElectricChargeSurfaceDensity
URI: http://qudt.org/vocab/quantitykind/ElectricChargeSurfaceDensity
quantitykind:ElectricChargeVolumeDensity
URI: http://qudt.org/vocab/quantitykind/ElectricChargeVolumeDensity
In electromagnetism, charge density is a measure of electric charge per unit volume of space, in one, two or three dimensions. More specifically: the linear, surface, or volume charge density is the amount of electric charge per unit length, surface area, or volume, respectively. The respective SI units are \(C \cdot m^{-1}\), \(C \cdot m^{-2}\) or \(C \cdot m^{-3}\).
quantitykind:ElectricConductivity
URI: http://qudt.org/vocab/quantitykind/ElectricConductivity
"Electric Conductivity} or \textit{Specific Conductance" is a measure of a material's ability to conduct an electric current. When an electrical potential difference is placed across a conductor, its movable charges flow, giving rise to an electric current. The conductivity \(\sigma\) is defined as the ratio of the electric current density \(J\) to the electric field \(E\): \(J = \sigma E\). In isotropic materials, conductivity is scalar-valued, however in general, conductivity is a tensor-valued quantity.
quantitykind:ElectricCurrent
URI: http://qudt.org/vocab/quantitykind/ElectricCurrent
quantitykind:ElectricCurrentDensity
URI: http://qudt.org/vocab/quantitykind/ElectricCurrentDensity
"Electric Current Density" is a measure of the density of flow of electric charge; it is the electric current per unit area of cross section. Electric current density is a vector-valued quantity. Electric current, \(I\), through a surface \(S\) is defined as \(I = \int_S J \cdot e_n dA\), where \(e_ndA\) is the vector surface element.
quantitykind:ElectricCurrentPerAngle
URI: http://qudt.org/vocab/quantitykind/ElectricCurrentPerAngle
quantitykind:ElectricCurrentPerUnitEnergy
URI: http://qudt.org/vocab/quantitykind/ElectricCurrentPerUnitEnergy
quantitykind:ElectricCurrentPerUnitLength
URI: http://qudt.org/vocab/quantitykind/ElectricCurrentPerUnitLength
quantitykind:ElectricCurrentPhasor
URI: http://qudt.org/vocab/quantitykind/ElectricCurrentPhasor
quantitykind:ElectricDipoleMoment
URI: http://qudt.org/vocab/quantitykind/ElectricDipoleMoment
quantitykind:ElectricDisplacement
URI: http://qudt.org/vocab/quantitykind/ElectricDisplacement
In a dielectric material the presence of an electric field E causes the bound charges in the material (atomic nuclei and their electrons) to slightly separate, inducing a local electric dipole moment. The Electric Displacement Field, \(D\), is a vector field that accounts for the effects of free charges within such dielectric materials. This describes also the charge density on an extended surface that could be causing the field.
quantitykind:ElectricDisplacementField
URI: http://qudt.org/vocab/quantitykind/ElectricDisplacementField
quantitykind:ElectricFieldStrength
URI: http://qudt.org/vocab/quantitykind/ElectricFieldStrength
\(\textbf{Electric Field Strength}\) is the magnitude and direction of an electric field, expressed by the value of \(E\), also referred to as \(\color{indigo} {\textit{electric field intensity}}\) or simply the electric field.
quantitykind:ElectricFluxDensity
URI: http://qudt.org/vocab/quantitykind/ElectricFluxDensity
\(\textbf{Electric Flux Density}\), also referred to as \(\textit{Electric Displacement}\), is related to electric charge density by the following equation: \(\text{div} \; D = \rho\), where \(\text{div}\) denotes the divergence.
quantitykind:ElectricPolarizability
URI: http://qudt.org/vocab/quantitykind/ElectricPolarizability
quantitykind:ElectricPolarization
URI: http://qudt.org/vocab/quantitykind/ElectricPolarization
quantitykind:ElectricPotential
URI: http://qudt.org/vocab/quantitykind/ElectricPotential
The Electric Potential is a scalar valued quantity associated with an electric field. The electric potential \(\phi(x)\) at a point, \(x\), is formally defined as the line integral of the electric field taken along a path from x to the point at infinity. If the electric field is static, that is time independent, then the choice of the path is arbitrary; however if the electric field is time dependent, taking the integral a different paths will produce different results.
quantitykind:ElectricPotentialDifference
URI: http://qudt.org/vocab/quantitykind/ElectricPotentialDifference
quantitykind:ElectricPower
URI: http://qudt.org/vocab/quantitykind/ElectricPower
"Electric Power" is the rate at which electrical energy is transferred by an electric circuit. In the simple case of direct current circuits, electric power can be calculated as the product of the potential difference in the circuit (V) and the amount of current flowing in the circuit (I): \(P = VI\), where \(P\) is the power, \(V\) is the potential difference, and \(I\) is the current. However, in general electric power is calculated by taking the integral of the vector cross-product of the electrical and magnetic fields over a specified area.
quantitykind:ElectricPropulsionPropellantMass
URI: http://qudt.org/vocab/quantitykind/ElectricPropulsionPropellantMass
quantitykind:ElectricQuadrupoleMoment
URI: http://qudt.org/vocab/quantitykind/ElectricQuadrupoleMoment
quantitykind:ElectricSusceptibility
URI: http://qudt.org/vocab/quantitykind/ElectricSusceptibility
quantitykind:ElectricalPowerToMassRatio
URI: http://qudt.org/vocab/quantitykind/ElectricalPowerToMassRatio
quantitykind:ElectrolyticConductivity
URI: http://qudt.org/vocab/quantitykind/ElectrolyticConductivity
quantitykind:ElectromagneticEnergyDensity
URI: http://qudt.org/vocab/quantitykind/ElectromagneticEnergyDensity
\(\textbf{Electromagnetic Energy Density}\), also known as the \(\color{indigo} {\textit{Volumic Electromagnetic Energy}}\), is the energy associated with an electromagnetic field, per unit volume of the field.
quantitykind:ElectromagneticPermeability
URI: http://qudt.org/vocab/quantitykind/ElectromagneticPermeability
"Permeability} is the degree of magnetization of a material that responds linearly to an applied magnetic field. In general permeability is a tensor-valued quantity. The definition given applies to an isotropic medium. For an anisotropic medium permeability is a second order tensor. In electromagnetism, permeability is the measure of the ability of a material to support the formation of a magnetic field within itself. In other words, it is the degree of magnetization that a material obtains in response to an applied magnetic field. Magnetic permeability is typically represented by the Greek letter \(\mu\). The term was coined in September, 1885 by Oliver Heaviside. The reciprocal of magnetic permeability is \textit{Magnetic Reluctivity".
quantitykind:ElectromagneticPermeabilityRatio
URI: http://qudt.org/vocab/quantitykind/ElectromagneticPermeabilityRatio
quantitykind:ElectromagneticWavePhaseSpeed
URI: http://qudt.org/vocab/quantitykind/ElectromagneticWavePhaseSpeed
quantitykind:ElectromotiveForce
URI: http://qudt.org/vocab/quantitykind/ElectromotiveForce
In physics, electromotive force, or most commonly \(emf\) (seldom capitalized), or (occasionally) electromotance is that which tends to cause current (actual electrons and ions) to flow. More formally, \(emf\) is the external work expended per unit of charge to produce an electric potential difference across two open-circuited terminals. "Electromotive Force" is deprecated in the ISO System of Quantities.
quantitykind:ElectronAffinity
URI: http://qudt.org/vocab/quantitykind/ElectronAffinity
quantitykind:ElectronDensity
URI: http://qudt.org/vocab/quantitykind/ElectronDensity
quantitykind:ElectronMeanFreePath
URI: http://qudt.org/vocab/quantitykind/ElectronMeanFreePath
quantitykind:ElementaryCharge
URI: http://qudt.org/vocab/quantitykind/ElementaryCharge
quantitykind:EllipticalOrbitApogeeVelocity
URI: http://qudt.org/vocab/quantitykind/EllipticalOrbitApogeeVelocity
quantitykind:EllipticalOrbitPerigeeVelocity
URI: http://qudt.org/vocab/quantitykind/EllipticalOrbitPerigeeVelocity
quantitykind:Emissivity
URI: http://qudt.org/vocab/quantitykind/Emissivity
Emissivity of a material (usually written \(\varepsilon\) or e) is the relative ability of its surface to emit energy by radiation.
quantitykind:EnergyDensityOfStates
URI: http://qudt.org/vocab/quantitykind/EnergyDensityOfStates
quantitykind:EnergyExpenditure
URI: http://qudt.org/vocab/quantitykind/EnergyExpenditure
Energy expenditure is dependent on a person's sex, metabolic rate, body-mass composition, the thermic effects of food, and activity level. The approximate energy expenditure of a man lying in bed is \(1.0\,kilo\,calorie\,per\,hour\,per\,kilogram\). For slow walking (just over two miles per hour), \(3.0\,kilo\,calorie\,per\,hour\,per\,kilogram\). For fast steady running (about 10 miles per hour), \(16.3\,kilo\,calorie\,per\,hour\,per\,kilogram\). Females expend about 10 per cent less energy than males of the same size doing a comparable activity. For people weighing the same, individuals with a high percentage of body fat usually expend less energy than lean people, because fat is not as metabolically active as muscle.
quantitykind:EnergyFluenceRate
URI: http://qudt.org/vocab/quantitykind/EnergyFluenceRate
quantitykind:EnergyInternal
URI: http://qudt.org/vocab/quantitykind/EnergyInternal
The internal energy is the total energy contained by a thermodynamic system. It is the energy needed to create the system, but excludes the energy to displace the system's surroundings, any energy associated with a move as a whole, or due to external force fields. Internal energy has two major components, kinetic energy and potential energy. The internal energy (U) is the sum of all forms of energy (Ei) intrinsic to a thermodynamic system: \( U = \sum_i E_i \)
quantitykind:EnergyPerAreaElectricCharge
URI: http://qudt.org/vocab/quantitykind/EnergyPerAreaElectricCharge
quantitykind:EnergyPerElectricCharge
URI: http://qudt.org/vocab/quantitykind/EnergyPerElectricCharge
Voltage is a representation of the electric potential energy per unit charge. If a unit of electrical charge were placed in a location, the voltage indicates the potential energy of it at that point. In other words, it is a measurement of the energy contained within an electric field, or an electric circuit, at a given point. Voltage is a scalar quantity. The SI unit of voltage is the volt, such that \(1 volt = 1 joule/coulomb\).
quantitykind:EnergyPerMassAmountOfSubstance
URI: http://qudt.org/vocab/quantitykind/EnergyPerMassAmountOfSubstance
quantitykind:EnergyPerSquareMagneticFluxDensity
URI: http://qudt.org/vocab/quantitykind/EnergyPerSquareMagneticFluxDensity
quantitykind:EnergyPerTemperature
URI: http://qudt.org/vocab/quantitykind/EnergyPerTemperature
quantitykind:Enthalpy
URI: http://qudt.org/vocab/quantitykind/Enthalpy
In thermodynamics, \(\textit{enthalpy}\) is the sum of the internal energy \(U\) and the product of pressure \(p\) and volume \(V\) of a system. The characteristic function (also known as thermodynamic potential) \(\textit{enthalpy}\) used to be called \(\textit{heat content}\), which is why it is conventionally indicated by \(H\). The specific enthalpy of a working mass is a property of that mass used in thermodynamics, defined as \(h=u+p \cdot v\), where \(u\) is the specific internal energy, \(p\) is the pressure, and \(v\) is specific volume. In other words, \(h = H / m\) where \(m\) is the mass of the system. The SI unit for \(\textit{Specific Enthalpy}\) is \(\textit{joules per kilogram}\)
quantitykind:Entropy
URI: http://qudt.org/vocab/quantitykind/Entropy
When a small amount of heat \(dQ\) is received by a system whose thermodynamic temperature is \(T\), the entropy of the system increases by \(dQ/T\), provided that no irreversible change takes place in the system.
quantitykind:EquilibriumConstant
URI: http://qudt.org/vocab/quantitykind/EquilibriumConstant
quantitykind:EquilibriumConstantOnConcentrationBasis
URI: http://qudt.org/vocab/quantitykind/EquilibriumConstantOnConcentrationBasis
The unit is unit:MOL-PER-M3 raised to the N where N is the summation of stoichiometric numbers. I don't know what to do with this.
quantitykind:EquilibriumConstantOnPressureBasis
URI: http://qudt.org/vocab/quantitykind/EquilibriumConstantOnPressureBasis
quantitykind:EquilibriumPositionVectorOfIon
URI: http://qudt.org/vocab/quantitykind/EquilibriumPositionVectorOfIon
quantitykind:EquivalentAbsorptionArea
URI: http://qudt.org/vocab/quantitykind/EquivalentAbsorptionArea
quantitykind:EvaporativeHeatTransfer
URI: http://qudt.org/vocab/quantitykind/EvaporativeHeatTransfer
quantitykind:EvaporativeHeatTransferCoefficient
URI: http://qudt.org/vocab/quantitykind/EvaporativeHeatTransferCoefficient
quantitykind:ExchangeIntegral
URI: http://qudt.org/vocab/quantitykind/ExchangeIntegral
quantitykind:ExhaustGasMeanMolecularWeight
URI: http://qudt.org/vocab/quantitykind/ExhaustGasMeanMolecularWeight
quantitykind:ExhaustGasesSpecificHeat
URI: http://qudt.org/vocab/quantitykind/ExhaustGasesSpecificHeat
quantitykind:ExhaustStreamPower
URI: http://qudt.org/vocab/quantitykind/ExhaustStreamPower
quantitykind:ExitPlaneCrossSectionalArea
URI: http://qudt.org/vocab/quantitykind/ExitPlaneCrossSectionalArea
quantitykind:ExitPlanePressure
URI: http://qudt.org/vocab/quantitykind/ExitPlanePressure
quantitykind:ExitPlaneTemperature
URI: http://qudt.org/vocab/quantitykind/ExitPlaneTemperature
quantitykind:ExtentOfReaction
URI: http://qudt.org/vocab/quantitykind/ExtentOfReaction
quantitykind:FLIGHT-PERFORMANCE-RESERVE-PROPELLANT-MASS
URI: http://qudt.org/vocab/quantitykind/FLIGHT-PERFORMANCE-RESERVE-PROPELLANT-MASS
quantitykind:FastFissionFactor
URI: http://qudt.org/vocab/quantitykind/FastFissionFactor
quantitykind:FermiAngularWavenumber
URI: http://qudt.org/vocab/quantitykind/FermiAngularWavenumber
quantitykind:FermiTemperature
URI: http://qudt.org/vocab/quantitykind/FermiTemperature
quantitykind:FinalOrCurrentVehicleMass
URI: http://qudt.org/vocab/quantitykind/FinalOrCurrentVehicleMass
quantitykind:FirstMomentOfArea
URI: http://qudt.org/vocab/quantitykind/FirstMomentOfArea
quantitykind:FirstStageMassRatio
URI: http://qudt.org/vocab/quantitykind/FirstStageMassRatio
quantitykind:FishBiotransformationHalfLife
URI: http://qudt.org/vocab/quantitykind/FishBiotransformationHalfLife
quantitykind:FissionCoreRadiusToHeightRatio
URI: http://qudt.org/vocab/quantitykind/FissionCoreRadiusToHeightRatio
quantitykind:FissionFuelUtilizationFactor
URI: http://qudt.org/vocab/quantitykind/FissionFuelUtilizationFactor
quantitykind:FissionMultiplicationFactor
URI: http://qudt.org/vocab/quantitykind/FissionMultiplicationFactor
quantitykind:FlightPathAngle
URI: http://qudt.org/vocab/quantitykind/FlightPathAngle
quantitykind:Force
URI: http://qudt.org/vocab/quantitykind/Force
"Force" is an influence that causes mass to accelerate. It may be experienced as a lift, a push, or a pull. Force is defined by Newton's Second Law as \(F = m \times a \), where \(F\) is force, \(m\) is mass and \(a\) is acceleration. Net force is mathematically equal to the time rate of change of the momentum of the body on which it acts. Since momentum is a vector quantity (has both a magnitude and direction), force also is a vector quantity.
quantitykind:ForcePerAreaTime
URI: http://qudt.org/vocab/quantitykind/ForcePerAreaTime
quantitykind:ForcePerElectricCharge
URI: http://qudt.org/vocab/quantitykind/ForcePerElectricCharge
The electric field depicts the force exerted on other electrically charged objects by the electrically charged particle the field is surrounding. The electric field is a vector field with SI units of newtons per coulomb (\(N C^{-1}\)) or, equivalently, volts per metre (\(V m^{-1}\) ). The SI base units of the electric field are \(kg m s^{-3} A^{-1}\). The strength or magnitude of the field at a given point is defined as the force that would be exerted on a positive test charge of 1 coulomb placed at that point
quantitykind:FractionalMass_Stage1
URI: http://qudt.org/vocab/quantitykind/FractionalMass_Stage1
quantitykind:FractionalMass_Stage2
URI: http://qudt.org/vocab/quantitykind/FractionalMass_Stage2
quantitykind:FractionalMass_Stage3
URI: http://qudt.org/vocab/quantitykind/FractionalMass_Stage3
quantitykind:FractionallMass_Stages1-3
URI: http://qudt.org/vocab/quantitykind/FractionallMass_Stages1-3
quantitykind:Frequency
URI: http://qudt.org/vocab/quantitykind/Frequency
"Frequency" is the number of occurrences of a repeating event per unit time. The repetition of the events may be periodic (that is. the length of time between event repetitions is fixed) or aperiodic (i.e. the length of time between event repetitions varies). Therefore, we distinguish between periodic and aperiodic frequencies. In the SI system, periodic frequency is measured in hertz (Hz) or multiples of hertz, while aperiodic frequency is measured in becquerel (Bq). In spectroscopy, \(\nu\) is mostly used. Light passing through different media keeps its frequency, but not its wavelength or wavenumber.
quantitykind:FrictionCoefficient
URI: http://qudt.org/vocab/quantitykind/FrictionCoefficient
quantitykind:FundamentalLatticeVector
URI: http://qudt.org/vocab/quantitykind/FundamentalLatticeVector
quantitykind:FundamentalReciprocalLatticeVector
URI: http://qudt.org/vocab/quantitykind/FundamentalReciprocalLatticeVector
quantitykind:GFactorOfNucleus
URI: http://qudt.org/vocab/quantitykind/GFactorOfNucleus
quantitykind:GROSS-LIFT-OFF-WEIGHT
URI: http://qudt.org/vocab/quantitykind/GROSS-LIFT-OFF-WEIGHT
quantitykind:GeneralizedCoordinate
URI: http://qudt.org/vocab/quantitykind/GeneralizedCoordinate
quantitykind:GeneralizedForce
URI: http://qudt.org/vocab/quantitykind/GeneralizedForce
quantitykind:GeneralizedMomentum
URI: http://qudt.org/vocab/quantitykind/GeneralizedMomentum
quantitykind:GeneralizedVelocity
URI: http://qudt.org/vocab/quantitykind/GeneralizedVelocity
quantitykind:GrandCanonicalPartitionFunction
URI: http://qudt.org/vocab/quantitykind/GrandCanonicalPartitionFunction
quantitykind:GravitationalAttraction
URI: http://qudt.org/vocab/quantitykind/GravitationalAttraction
quantitykind:GroupSpeedOfSound
URI: http://qudt.org/vocab/quantitykind/GroupSpeedOfSound
quantitykind:GruneisenParameter
URI: http://qudt.org/vocab/quantitykind/GruneisenParameter
quantitykind:GustatoryThreshold
URI: http://qudt.org/vocab/quantitykind/GustatoryThreshold
quantitykind:GyromagneticRatio
URI: http://qudt.org/vocab/quantitykind/GyromagneticRatio
"Gyromagnetic Ratio}, also sometimes known as the magnetogyric ratio in other disciplines, of a particle or system is the ratio of its magnetic dipole moment to its angular momentum, and it is often denoted by the symbol, \(\gamma\). Its SI units are radian per second per tesla (\(rad s^{-1} \cdot T^{1}\)) or, equivalently, coulomb per kilogram (\(C \cdot kg^{-1"\)).
quantitykind:Half-ValueThickness
URI: http://qudt.org/vocab/quantitykind/Half-ValueThickness
quantitykind:HallCoefficient
URI: http://qudt.org/vocab/quantitykind/HallCoefficient
quantitykind:HamiltonFunction
URI: http://qudt.org/vocab/quantitykind/HamiltonFunction
quantitykind:HeadEndPressure
URI: http://qudt.org/vocab/quantitykind/HeadEndPressure
quantitykind:HeatCapacity
URI: http://qudt.org/vocab/quantitykind/HeatCapacity
"Heat Capacity" (usually denoted by a capital \(C\), often with subscripts), or thermal capacity, is the measurable physical quantity that characterizes the amount of heat required to change a substance's temperature by a given amount. In the International System of Units (SI), heat capacity is expressed in units of joule(s) (J) per kelvin (K).
quantitykind:HeatCapacityRatio
URI: http://qudt.org/vocab/quantitykind/HeatCapacityRatio
The heat capacity ratio, or ratio of specific heats, is the ratio of the heat capacity at constant pressure (\(C_P\)) to heat capacity at constant volume (\(C_V\)). For an ideal gas, the heat capacity is constant with temperature (\(\theta\)). Accordingly we can express the enthalpy as \(H = C_P*\theta\) and the internal energy as \(U = C_V \cdot \theta\). Thus, it can also be said that the heat capacity ratio is the ratio between enthalpy and internal energy.
quantitykind:HeatFlowRate
URI: http://qudt.org/vocab/quantitykind/HeatFlowRate
The rate of heat flow between two systems is measured in watts (joules per second). The formula for rate of heat flow is \(\bigtriangleup Q / \bigtriangleup t = -K \times A \times \bigtriangleup T/x\), where \(\bigtriangleup Q / \bigtriangleup t\) is the rate of heat flow; \(-K\) is the thermal conductivity factor; A is the surface area; \(\bigtriangleup T\) is the change in temperature and \(x\) is the thickness of the material. \(\bigtriangleup T/ x\) is called the temperature gradient and is always negative because of the heat of flow always goes from more thermal energy to less).
quantitykind:HeatFlowRatePerUnitArea
URI: http://qudt.org/vocab/quantitykind/HeatFlowRatePerUnitArea
\(\textit{Heat Flux}\) is the heat rate per unit area. In SI units, heat flux is measured in \(W/m^2\). Heat rate is a scalar quantity, while heat flux is a vectorial quantity. To define the heat flux at a certain point in space, one takes the limiting case where the size of the surface becomes infinitesimally small.
quantitykind:HeatFluxDensity
URI: http://qudt.org/vocab/quantitykind/HeatFluxDensity
quantitykind:HelmholtzEnergy
URI: http://qudt.org/vocab/quantitykind/HelmholtzEnergy
\(\textit{Helmholtz Energy}\) is one of the potentials are used to measure energy changes in systems as they evolve from an initial state to a final state. The potential used depends on the constraints of the system, such as constant temperature or pressure. \(\textit{Internal Energy}\) is the internal energy of the system, \(\textit{Enthalpy}\) is the internal energy of the system plus the energy related to pressure-volume work, and Helmholtz and Gibbs free energy are the energies available in a system to do useful work when the temperature and volume or the pressure and temperature are fixed, respectively. The name \(\textit{Helmholz Free Energy}\) is also used.
quantitykind:HenrysLawVolatilityConstant
URI: http://qudt.org/vocab/quantitykind/HenrysLawVolatilityConstant
quantitykind:HorizontalVelocity
URI: http://qudt.org/vocab/quantitykind/HorizontalVelocity
quantitykind:HyperfineStructureQuantumNumber
URI: http://qudt.org/vocab/quantitykind/HyperfineStructureQuantumNumber
quantitykind:IgnitionIntervalTime
URI: http://qudt.org/vocab/quantitykind/IgnitionIntervalTime
quantitykind:IncidenceProportion
URI: http://qudt.org/vocab/quantitykind/IncidenceProportion
quantitykind:InfiniteMultiplicationFactor
URI: http://qudt.org/vocab/quantitykind/InfiniteMultiplicationFactor
quantitykind:InformationEntropy
URI: http://qudt.org/vocab/quantitykind/InformationEntropy
quantitykind:InformationFlowRate
URI: http://qudt.org/vocab/quantitykind/InformationFlowRate
quantitykind:InitialExpansionRatio
URI: http://qudt.org/vocab/quantitykind/InitialExpansionRatio
quantitykind:InitialNozzleThroatDiameter
URI: http://qudt.org/vocab/quantitykind/InitialNozzleThroatDiameter
quantitykind:InitialVehicleMass
URI: http://qudt.org/vocab/quantitykind/InitialVehicleMass
quantitykind:InitialVelocity
URI: http://qudt.org/vocab/quantitykind/InitialVelocity
quantitykind:InstantaneousPower
URI: http://qudt.org/vocab/quantitykind/InstantaneousPower
"Instantaneous Power}, for a two-terminal element or a two-terminal circuit with terminals A and B, is the product of the voltage \(u_{AB}\) between the terminals and the electric current i in the element or circuit: \(p = \)u_{AB} \cdot i\(, where \)u_{AB" is the line integral of the electric field strength from A to B, and where the electric current in the element or circuit is taken positive if its direction is from A to B and negative in the opposite case. For an n-terminal circuit, it is the sum of the instantaneous powers relative to the n - 1 pairs of terminals when one of the terminals is chosen as a common terminal for the pairs. For a polyphase element, it is the sum of the instantaneous powers in all phase elements of a polyphase element. For a polyphase line consisting of m line conductors and one neutral conductor, it is the sum of the m instantaneous powers expressed for each line conductor by the product of the polyphase line-to-neutral voltage and the corresponding line current.
quantitykind:InternalConversionFactor
URI: http://qudt.org/vocab/quantitykind/InternalConversionFactor
quantitykind:IntinsicCarrierDensity
URI: http://qudt.org/vocab/quantitykind/IntinsicCarrierDensity
quantitykind:InverseAmountOfSubstance
URI: http://qudt.org/vocab/quantitykind/InverseAmountOfSubstance
quantitykind:InverseLength
URI: http://qudt.org/vocab/quantitykind/InverseLength
Reciprocal length or inverse length is a measurement used in several branches of science and mathematics. As the reciprocal of length, common units used for this measurement include the reciprocal metre or inverse metre (\(m^{-1}\)), the reciprocal centimetre or inverse centimetre (\(cm^{-1}\)), and, in optics, the dioptre.
quantitykind:InverseLengthTemperature
URI: http://qudt.org/vocab/quantitykind/InverseLengthTemperature
quantitykind:InverseMagneticFlux
URI: http://qudt.org/vocab/quantitykind/InverseMagneticFlux
quantitykind:InversePermittivity
URI: http://qudt.org/vocab/quantitykind/InversePermittivity
quantitykind:InversePressure
URI: http://qudt.org/vocab/quantitykind/InversePressure
quantitykind:InverseSquareEnergy
URI: http://qudt.org/vocab/quantitykind/InverseSquareEnergy
quantitykind:InverseSquareMass
URI: http://qudt.org/vocab/quantitykind/InverseSquareMass
quantitykind:InverseSquareTime
URI: http://qudt.org/vocab/quantitykind/InverseSquareTime
quantitykind:InverseTemperature
URI: http://qudt.org/vocab/quantitykind/InverseTemperature
quantitykind:InverseTimeTemperature
URI: http://qudt.org/vocab/quantitykind/InverseTimeTemperature
quantitykind:IonTransportNumber
URI: http://qudt.org/vocab/quantitykind/IonTransportNumber
quantitykind:IonizationEnergy
URI: http://qudt.org/vocab/quantitykind/IonizationEnergy
quantitykind:IsentropicCompressibility
URI: http://qudt.org/vocab/quantitykind/IsentropicCompressibility
quantitykind:IsentropicExponent
URI: http://qudt.org/vocab/quantitykind/IsentropicExponent
Isentropic exponent is a variant of "Specific Heat Ratio Capacities}. For an ideal gas \textit{Isentropic Exponent"\(, \varkappa\). is equal to \(\gamma\), the ratio of its specific heat capacities \(c_p\) and \(c_v\) under steady pressure and volume.
quantitykind:IsothermalCompressibility
URI: http://qudt.org/vocab/quantitykind/IsothermalCompressibility
quantitykind:KinematicViscosity
URI: http://qudt.org/vocab/quantitykind/KinematicViscosity
The ratio of the viscosity of a liquid to its density. Viscosity is a measure of the resistance of a fluid which is being deformed by either shear stress or tensile stress. In many situations, we are concerned with the ratio of the inertial force to the viscous force (that is the Reynolds number), the former characterized by the fluid density \(\rho\). This ratio is characterized by the kinematic viscosity (Greek letter \(\nu\)), defined as follows: \(\nu = \mu / \rho\). The SI unit of \(\nu\) is \(m^{2}/s\). The SI unit of \(\nu\) is \(kg/m^{1}\).
quantitykind:KineticEnergy
URI: http://qudt.org/vocab/quantitykind/KineticEnergy
\(\textit{Kinetic Energy}\) is the energy which a body possesses as a consequence of its motion, defined as one-half the product of its mass \(m\) and the square of its speed \(v\), \( \frac{1}{2} mv^{2} \). The kinetic energy per unit volume of a fluid parcel is the \( \frac{1}{2} p v^{2}\) , where \(p\) is the density and \(v\) the speed of the parcel. See potential energy. For relativistic speeds the kinetic energy is given by \(E_k = mc^2 - m_0 c^2\), where \(c\) is the velocity of light in a vacuum, \(m_0\) is the rest mass, and \(m\) is the moving mass.
quantitykind:LagrangeFunction
URI: http://qudt.org/vocab/quantitykind/LagrangeFunction
quantitykind:Landau-GinzburgNumber
URI: http://qudt.org/vocab/quantitykind/Landau-GinzburgNumber
quantitykind:LarmorAngularFrequency
URI: http://qudt.org/vocab/quantitykind/LarmorAngularFrequency
quantitykind:LatticePlaneSpacing
URI: http://qudt.org/vocab/quantitykind/LatticePlaneSpacing
quantitykind:LengthMolarEnergy
URI: http://qudt.org/vocab/quantitykind/LengthMolarEnergy
quantitykind:LengthPerUnitElectricCurrent
URI: http://qudt.org/vocab/quantitykind/LengthPerUnitElectricCurrent
quantitykind:LengthPercentage
URI: http://qudt.org/vocab/quantitykind/LengthPercentage
quantitykind:LengthTemperature
URI: http://qudt.org/vocab/quantitykind/LengthTemperature
quantitykind:LengthTemperatureTime
URI: http://qudt.org/vocab/quantitykind/LengthTemperatureTime
quantitykind:LiftCoefficient
URI: http://qudt.org/vocab/quantitykind/LiftCoefficient
quantitykind:LinearAbsorptionCoefficient
URI: http://qudt.org/vocab/quantitykind/LinearAbsorptionCoefficient
quantitykind:LinearAcceleration
URI: http://qudt.org/vocab/quantitykind/LinearAcceleration
quantitykind:LinearAttenuationCoefficient
URI: http://qudt.org/vocab/quantitykind/LinearAttenuationCoefficient
quantitykind:LinearCompressibility
URI: http://qudt.org/vocab/quantitykind/LinearCompressibility
quantitykind:LinearElectricCurrent
URI: http://qudt.org/vocab/quantitykind/LinearElectricCurrent
quantitykind:LinearElectricCurrentDensity
URI: http://qudt.org/vocab/quantitykind/LinearElectricCurrentDensity
"Linear Electric Linear Current Density" is the electric current per unit length. Electric current, \(I\), through a curve \(C\) is defined as \(I = \int_C J _s \times e_n\), where \(e_n\) is a unit vector perpendicular to the surface and line vector element, and \(dr\) is the differential of position vector \(r\).
quantitykind:LinearEnergyTransfer
URI: http://qudt.org/vocab/quantitykind/LinearEnergyTransfer
quantitykind:LinearExpansionCoefficient
URI: http://qudt.org/vocab/quantitykind/LinearExpansionCoefficient
quantitykind:LinearIonization
URI: http://qudt.org/vocab/quantitykind/LinearIonization
quantitykind:LinearMomentum
URI: http://qudt.org/vocab/quantitykind/LinearMomentum
Linear momentum is the quantity obtained by multiplying the mass of a body by its linear velocity. The momentum of a continuous medium is given by the integral of the velocity over the mass of the medium or by the product of the total mass of the medium and the velocity of the center of gravity of the medium.The SI unit for linear momentum is meter-kilogram per second (\(m-kg/s\)).
quantitykind:LinearThermalExpansion
URI: http://qudt.org/vocab/quantitykind/LinearThermalExpansion
quantitykind:LinearVelocity
URI: http://qudt.org/vocab/quantitykind/LinearVelocity
Linear Velocity, as the name implies deals with speed in a straight line, the units are often \(km/hr\) or \(m/s\) or \(mph\) (miles per hour). Linear Velocity (v) = change in distance/change in time, where \(v = \bigtriangleup d/\bigtriangleup t\)
quantitykind:LinkedFlux
URI: http://qudt.org/vocab/quantitykind/LinkedFlux
"Linked Flux" is defined as the path integral of the magnetic vector potential. This is the line integral of a magnetic vector potential \(A\) along a curve \(C\). The line vector element \(dr\) is the differential of position vector \(r\).
quantitykind:LogOctanolAirPartitionCoefficient
URI: http://qudt.org/vocab/quantitykind/LogOctanolAirPartitionCoefficient
quantitykind:LogOctanolWaterPartitionCoefficient
URI: http://qudt.org/vocab/quantitykind/LogOctanolWaterPartitionCoefficient
quantitykind:LogarithmicFrequencyInterval
URI: http://qudt.org/vocab/quantitykind/LogarithmicFrequencyInterval
quantitykind:LondonPenetrationDepth
URI: http://qudt.org/vocab/quantitykind/LondonPenetrationDepth
quantitykind:Long-RangeOrderParameter
URI: http://qudt.org/vocab/quantitykind/Long-RangeOrderParameter
quantitykind:LorenzCoefficient
URI: http://qudt.org/vocab/quantitykind/LorenzCoefficient
quantitykind:LowerCriticalMagneticFluxDensity
URI: http://qudt.org/vocab/quantitykind/LowerCriticalMagneticFluxDensity
quantitykind:LuminousEfficacy
URI: http://qudt.org/vocab/quantitykind/LuminousEfficacy
quantitykind:LuminousEmmitance
URI: http://qudt.org/vocab/quantitykind/LuminousEmmitance
quantitykind:LuminousExposure
URI: http://qudt.org/vocab/quantitykind/LuminousExposure
quantitykind:LuminousFluxPerArea
URI: http://qudt.org/vocab/quantitykind/LuminousFluxPerArea
In photometry, illuminance is the total luminous flux incident on a surface, per unit area. It is a measure of how much the incident light illuminates the surface, wavelength-weighted by the luminosity function to correlate with human brightness perception. Similarly, luminous emittance is the luminous flux per unit area emitted from a surface. In SI derived units these are measured in \(lux (lx)\) or \(lumens per square metre\) (\(cd \cdot m^{-2}\)). In the CGS system, the unit of illuminance is the \(phot\), which is equal to \(10,000 lux\). The \(foot-candle\) is a non-metric unit of illuminance that is used in photography.
quantitykind:LuminousIntensity
URI: http://qudt.org/vocab/quantitykind/LuminousIntensity
quantitykind:MASS-GROWTH-ALLOWANCE
URI: http://qudt.org/vocab/quantitykind/MASS-GROWTH-ALLOWANCE
quantitykind:MASS-PROPERTY-UNCERTAINTY
URI: http://qudt.org/vocab/quantitykind/MASS-PROPERTY-UNCERTAINTY
quantitykind:MOMENT-OF-INERTIA_Y
URI: http://qudt.org/vocab/quantitykind/MOMENT-OF-INERTIA_Y
quantitykind:MOMENT-OF-INERTIA_Z
URI: http://qudt.org/vocab/quantitykind/MOMENT-OF-INERTIA_Z
quantitykind:MachNumber
URI: http://qudt.org/vocab/quantitykind/MachNumber
"Mach Number" is a dimensionless quantity representing the speed of an object moving through air or other fluid divided by the local speed of sound. It is commonly used to represent the speed of an object when it is traveling close to or above the speed of sound. The Mach number is commonly used both with objects traveling at high speed in a fluid, and with high-speed fluid flows inside channels such as nozzles, diffusers or wind tunnels. As it is defined as a ratio of two speeds, it is a dimensionless number.
quantitykind:MacroscopicCrossSection
URI: http://qudt.org/vocab/quantitykind/MacroscopicCrossSection
quantitykind:MacroscopicTotalCrossSection
URI: http://qudt.org/vocab/quantitykind/MacroscopicTotalCrossSection
quantitykind:MadelungConstant
URI: http://qudt.org/vocab/quantitykind/MadelungConstant
quantitykind:MagneticAreaMoment
URI: http://qudt.org/vocab/quantitykind/MagneticAreaMoment
quantitykind:MagneticDipoleMoment
URI: http://qudt.org/vocab/quantitykind/MagneticDipoleMoment
"Magnetic Dipole Moment" is the magnetic moment of a system is a measure of the magnitude and the direction of its magnetism. Magnetic moment usually refers to its Magnetic Dipole Moment, and quantifies the contribution of the system's internal magnetism to the external dipolar magnetic field produced by the system (that is, the component of the external magnetic field that is inversely proportional to the cube of the distance to the observer). The Magnetic Dipole Moment is a vector-valued quantity. For a particle or nucleus, vector quantity causing an increment \(\Delta W = -\mu \cdot B\) to its energy \(W\) in an external magnetic field with magnetic flux density \(B\).
quantitykind:MagneticField
URI: http://qudt.org/vocab/quantitykind/MagneticField
The Magnetic Field, denoted \(B\), is a fundamental field in electrodynamics which characterizes the magnetic force exerted by electric currents. It is closely related to the auxillary magnetic field H (see quantitykind:AuxillaryMagneticField).
quantitykind:MagneticFieldStrength_H
URI: http://qudt.org/vocab/quantitykind/MagneticFieldStrength_H
\(\textbf{Magnetic Field Strength}\) is a vector quantity obtained at a given point by subtracting the magnetization \(M\) from the magnetic flux density \(B\) divided by the magnetic constant \(\mu_0\). The magnetic field strength is related to the total current density \(J_{tot}\) via: \(\text{rot} H = J_{tot}\).
quantitykind:MagneticFluxDensity
URI: http://qudt.org/vocab/quantitykind/MagneticFluxDensity
"Magnetic Flux Density" is a vector quantity and is the magnetic flux per unit area of a magnetic field at right angles to the magnetic force. It can be defined in terms of the effects the field has, for example by \(B = F/q v \sin \theta\), where \(F\) is the force a moving charge \(q\) would experience if it was travelling at a velocity \(v\) in a direction making an angle θ with that of the field. The magnetic field strength is also a vector quantity and is related to \(B\) by: \(H = B/\mu\), where \(\mu\) is the permeability of the medium.
quantitykind:MagneticFluxPerUnitLength
URI: http://qudt.org/vocab/quantitykind/MagneticFluxPerUnitLength
quantitykind:MagneticPolarization
URI: http://qudt.org/vocab/quantitykind/MagneticPolarization
\(\textbf{Magnetic Polarization}\) is a vector quantity equal to the product of the magnetization \(M\) and the magnetic constant \(\mu_0\).
quantitykind:MagneticQuantumNumber
URI: http://qudt.org/vocab/quantitykind/MagneticQuantumNumber
quantitykind:MagneticReluctivity
URI: http://qudt.org/vocab/quantitykind/MagneticReluctivity
quantitykind:MagneticSusceptability
URI: http://qudt.org/vocab/quantitykind/MagneticSusceptability
"Magnetic Susceptability" is a scalar or tensor quantity the product of which by the magnetic constant \(\mu_0\) and by the magnetic field strength \(H\) is equal to the magnetic polarization \(J\). The definition given applies to an isotropic medium. For an anisotropic medium permeability is a second order tensor.
quantitykind:MagneticTension
URI: http://qudt.org/vocab/quantitykind/MagneticTension
quantitykind:MagneticVectorPotential
URI: http://qudt.org/vocab/quantitykind/MagneticVectorPotential
quantitykind:MagnetizationField
URI: http://qudt.org/vocab/quantitykind/MagnetizationField
quantitykind:MagnetomotiveForce
URI: http://qudt.org/vocab/quantitykind/MagnetomotiveForce
\(\textbf{Magnetomotive Force}\) (\(mmf\)) is the ability of an electric circuit to produce magnetic flux. Just as the ability of a battery to produce electric current is called its electromotive force or emf, mmf is taken as the work required to move a unit magnet pole from any point through any path which links the electric circuit back the same point in the presence of the magnetic force produced by the electric current in the circuit. \(\textbf{Magnetomotive Force}\) is the scalar line integral of the magnetic field strength along a closed path.
quantitykind:Mass
URI: http://qudt.org/vocab/quantitykind/Mass
In physics, mass, more specifically inertial mass, can be defined as a quantitative measure of an object's resistance to acceleration. The SI unit of mass is the kilogram (\(kg\))
quantitykind:MassAbsorptionCoefficient
URI: http://qudt.org/vocab/quantitykind/MassAbsorptionCoefficient
quantitykind:MassAmountOfSubstance
URI: http://qudt.org/vocab/quantitykind/MassAmountOfSubstance
quantitykind:MassAmountOfSubstanceTemperature
URI: http://qudt.org/vocab/quantitykind/MassAmountOfSubstanceTemperature
quantitykind:MassAttenuationCoefficient
URI: http://qudt.org/vocab/quantitykind/MassAttenuationCoefficient
quantitykind:MassConcentration
URI: http://qudt.org/vocab/quantitykind/MassConcentration
quantitykind:MassConcentrationOfWater
URI: http://qudt.org/vocab/quantitykind/MassConcentrationOfWater
quantitykind:MassConcentrationOfWaterVapour
URI: http://qudt.org/vocab/quantitykind/MassConcentrationOfWaterVapour
quantitykind:MassEnergyTransferCoefficient
URI: http://qudt.org/vocab/quantitykind/MassEnergyTransferCoefficient
quantitykind:MassFlowRate
URI: http://qudt.org/vocab/quantitykind/MassFlowRate
"Mass Flow Rate" is a measure of Mass flux. The common symbol is \(\dot{m}\) (pronounced "m-dot"), although sometimes \(\mu\) is used. The SI units are \(kg s-1\).
quantitykind:MassFractionOfDryMatter
URI: http://qudt.org/vocab/quantitykind/MassFractionOfDryMatter
quantitykind:MassFractionOfWater
URI: http://qudt.org/vocab/quantitykind/MassFractionOfWater
quantitykind:MassNumber
URI: http://qudt.org/vocab/quantitykind/MassNumber
The "Mass Number" (A), also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. Nuclides with the same value of \(A\) are called isobars.
quantitykind:MassOfElectricalPowerSupply
URI: http://qudt.org/vocab/quantitykind/MassOfElectricalPowerSupply
quantitykind:MassOfSolidBooster
URI: http://qudt.org/vocab/quantitykind/MassOfSolidBooster
quantitykind:MassPerArea
URI: http://qudt.org/vocab/quantitykind/MassPerArea
The area density (also known as areal density, surface density, or superficial density) of a two-dimensional object is calculated as the mass per unit area. The SI derived unit is: kilogram per square metre (\(kg \cdot m^{-2}\)).
quantitykind:MassPerAreaTime
URI: http://qudt.org/vocab/quantitykind/MassPerAreaTime
In Physics and Engineering, mass flux is the rate of mass flow per unit area. The common symbols are \(j\), \(J\), \(\phi\), or \(\Phi\) (Greek lower or capital Phi), sometimes with subscript \(m\) to indicate mass is the flowing quantity. Its SI units are \( kg s^{-1} m^{-2}\).
quantitykind:MassPerElectricCharge
URI: http://qudt.org/vocab/quantitykind/MassPerElectricCharge
The mass-to-charge ratio ratio (\(m/Q\)) is a physical quantity that is widely used in the electrodynamics of charged particles, for example, in electron optics and ion optics. The importance of the mass-to-charge ratio, according to classical electrodynamics, is that two particles with the same mass-to-charge ratio move in the same path in a vacuum when subjected to the same electric and magnetic fields. Its SI units are \(kg/C\), but it can also be measured in Thomson (\(Th\)).
quantitykind:MassPerLength
URI: http://qudt.org/vocab/quantitykind/MassPerLength
Linear density, linear mass density or linear mass is a measure of mass per unit of length, and it is a characteristic of strings or other one-dimensional objects. The SI unit of linear density is the kilogram per metre (\(kg/m\)).
quantitykind:MassRatioOfWaterToDryMatter
URI: http://qudt.org/vocab/quantitykind/MassRatioOfWaterToDryMatter
quantitykind:MassRatioOfWaterVapourToDryGas
URI: http://qudt.org/vocab/quantitykind/MassRatioOfWaterVapourToDryGas
quantitykind:MassTemperature
URI: http://qudt.org/vocab/quantitykind/MassTemperature
quantitykind:MassieuFunction
URI: http://qudt.org/vocab/quantitykind/MassieuFunction
The Massieu function, \(\Psi\), is defined as: \(\Psi = \Psi (X_1, \dots , X_i, Y_{i+1}, \dots , Y_r )\), where for every system with degree of freedom \(r\) one may choose \(r\) variables, e.g. , to define a coordinate system, where \(X\) and \(Y\) are extensive and intensive variables, respectively, and where at least one extensive variable must be within this set in order to define the size of the system. The \((r + 1)^{th}\) variable,\(\Psi\) , is then called the Massieu function.
quantitykind:MaxExpectedOperatingThrust
URI: http://qudt.org/vocab/quantitykind/MaxExpectedOperatingThrust
quantitykind:MaxOperatingThrust
URI: http://qudt.org/vocab/quantitykind/MaxOperatingThrust
quantitykind:MaxSeaLevelThrust
URI: http://qudt.org/vocab/quantitykind/MaxSeaLevelThrust
Max Sea Level thrust (Mlbf)
quantitykind:MaximumBeta-ParticleEnergy
URI: http://qudt.org/vocab/quantitykind/MaximumBeta-ParticleEnergy
quantitykind:MaximumExpectedOperatingPressure
URI: http://qudt.org/vocab/quantitykind/MaximumExpectedOperatingPressure
quantitykind:MaximumOperatingPressure
URI: http://qudt.org/vocab/quantitykind/MaximumOperatingPressure
quantitykind:MeanEnergyImparted
URI: http://qudt.org/vocab/quantitykind/MeanEnergyImparted
quantitykind:MeanLifetime
URI: http://qudt.org/vocab/quantitykind/MeanLifetime
The "Mean Lifetime" is the average length of time that an element remains in the set of discrete elements in a decaying quantity, \(N(t)\).
quantitykind:MeanLinearRange
URI: http://qudt.org/vocab/quantitykind/MeanLinearRange
quantitykind:MechanicalEnergy
URI: http://qudt.org/vocab/quantitykind/MechanicalEnergy
quantitykind:MechanicalImpedance
URI: http://qudt.org/vocab/quantitykind/MechanicalImpedance
quantitykind:MechanicalMobility
URI: http://qudt.org/vocab/quantitykind/MechanicalMobility
quantitykind:MechanicalSurfaceImpedance
URI: http://qudt.org/vocab/quantitykind/MechanicalSurfaceImpedance
quantitykind:MicroCanonicalPartitionFunction
URI: http://qudt.org/vocab/quantitykind/MicroCanonicalPartitionFunction
quantitykind:MicrobialFormation
URI: http://qudt.org/vocab/quantitykind/MicrobialFormation
quantitykind:MigrationLength
URI: http://qudt.org/vocab/quantitykind/MigrationLength
quantitykind:ModulusOfAdmittance
URI: http://qudt.org/vocab/quantitykind/ModulusOfAdmittance
quantitykind:ModulusOfElasticity
URI: http://qudt.org/vocab/quantitykind/ModulusOfElasticity
quantitykind:ModulusOfImpedance
URI: http://qudt.org/vocab/quantitykind/ModulusOfImpedance
"Modulus Of Impedance} is the absolute value of the quantity \textit{impedance". Apparent impedance is defined more generally as the quotient of rms voltage and rms electric current; it is often denoted by \(Z\).
quantitykind:MolalityOfSolute
URI: http://qudt.org/vocab/quantitykind/MolalityOfSolute
quantitykind:MolarAbsorptionCoefficient
URI: http://qudt.org/vocab/quantitykind/MolarAbsorptionCoefficient
quantitykind:MolarAngularMomentum
URI: http://qudt.org/vocab/quantitykind/MolarAngularMomentum
quantitykind:MolarAttenuationCoefficient
URI: http://qudt.org/vocab/quantitykind/MolarAttenuationCoefficient
quantitykind:MolarConductivity
URI: http://qudt.org/vocab/quantitykind/MolarConductivity
quantitykind:MolarEnergy
URI: http://qudt.org/vocab/quantitykind/MolarEnergy
"Molar Energy" is the total energy contained by a thermodynamic system. The unit is \(J/mol\), also expressed as \(joule/mole\), or \(joules per mole\). This unit is commonly used in the SI unit system. The quantity has the dimension of \(M \cdot L^2 \cdot T^{-2} \cdot N^{-1}\) where \(M\) is mass, \(L\) is length, \(T\) is time, and \(N\) is amount of substance.
quantitykind:MolarHeatCapacity
URI: http://qudt.org/vocab/quantitykind/MolarHeatCapacity
quantitykind:MolarMass
URI: http://qudt.org/vocab/quantitykind/MolarMass
In chemistry, the molar mass M is defined as the mass of a given substance (chemical element or chemical compound) divided by its amount of substance. It is a physical property of a given substance. The base SI unit for molar mass is \(kg/mol\).
quantitykind:MolarOpticalRotatoryPower
URI: http://qudt.org/vocab/quantitykind/MolarOpticalRotatoryPower
quantitykind:MolarRefractivity
URI: http://qudt.org/vocab/quantitykind/MolarRefractivity
quantitykind:MolarVolume
URI: http://qudt.org/vocab/quantitykind/MolarVolume
The molar volume, symbol \(V_m\), is the volume occupied by one mole of a substance (chemical element or chemical compound) at a given temperature and pressure. It is equal to the molar mass (\(M\)) divided by the mass density (\(\rho\)). It has the SI unit cubic metres per mole (\(m^{1}/mol\)). For ideal gases, the molar volume is given by the ideal gas equation: this is a good approximation for many common gases at standard temperature and pressure. For crystalline solids, the molar volume can be measured by X-ray crystallography.
quantitykind:MolecularConcentration
URI: http://qudt.org/vocab/quantitykind/MolecularConcentration
quantitykind:MolecularViscosity
URI: http://qudt.org/vocab/quantitykind/MolecularViscosity
quantitykind:MomentOfInertia
URI: http://qudt.org/vocab/quantitykind/MomentOfInertia
quantitykind:MomentumPerAngle
URI: http://qudt.org/vocab/quantitykind/MomentumPerAngle
quantitykind:MultiplicationFactor
URI: http://qudt.org/vocab/quantitykind/MultiplicationFactor
quantitykind:MutualInductance
URI: http://qudt.org/vocab/quantitykind/MutualInductance
\(\textit{Mutual Inductance}\) is the non-diagonal term of the inductance matrix. For two loops, the symbol \(M\) is used for \(L_{12}\).
quantitykind:NOMINAL-ASCENT-PROPELLANT-MASS
URI: http://qudt.org/vocab/quantitykind/NOMINAL-ASCENT-PROPELLANT-MASS
quantitykind:NapierianAbsorbance
URI: http://qudt.org/vocab/quantitykind/NapierianAbsorbance
quantitykind:NeelTemperature
URI: http://qudt.org/vocab/quantitykind/NeelTemperature
quantitykind:NeutronDiffusionCoefficient
URI: http://qudt.org/vocab/quantitykind/NeutronDiffusionCoefficient
quantitykind:NeutronDiffusionLength
URI: http://qudt.org/vocab/quantitykind/NeutronDiffusionLength
quantitykind:NeutronNumber
URI: http://qudt.org/vocab/quantitykind/NeutronNumber
"Neutron Number", symbol \(N\), is the number of neutrons in a nuclide. Nuclides with the same value of \(N\) but different values of \(Z\) are called isotones. \(N - Z\) is called the neutron excess number.
quantitykind:NeutronYieldPerAbsorption
URI: http://qudt.org/vocab/quantitykind/NeutronYieldPerAbsorption
quantitykind:NeutronYieldPerFission
URI: http://qudt.org/vocab/quantitykind/NeutronYieldPerFission
quantitykind:Non-LeakageProbability
URI: http://qudt.org/vocab/quantitykind/Non-LeakageProbability
quantitykind:NozzleThroatCrossSectionalArea
URI: http://qudt.org/vocab/quantitykind/NozzleThroatCrossSectionalArea
quantitykind:NozzleThroatDiameter
URI: http://qudt.org/vocab/quantitykind/NozzleThroatDiameter
quantitykind:NozzleThroatPressure
URI: http://qudt.org/vocab/quantitykind/NozzleThroatPressure
quantitykind:NozzleWallsThrustReaction
URI: http://qudt.org/vocab/quantitykind/NozzleWallsThrustReaction
quantitykind:NuclearQuadrupoleMoment
URI: http://qudt.org/vocab/quantitykind/NuclearQuadrupoleMoment
quantitykind:NuclearSpinQuantumNumber
URI: http://qudt.org/vocab/quantitykind/NuclearSpinQuantumNumber
quantitykind:NumberOfParticles
URI: http://qudt.org/vocab/quantitykind/NumberOfParticles
quantitykind:OlfactoryThreshold
URI: http://qudt.org/vocab/quantitykind/OlfactoryThreshold
quantitykind:OrbitalAngularMomentumPerUnitMass
URI: http://qudt.org/vocab/quantitykind/OrbitalAngularMomentumPerUnitMass
quantitykind:OrbitalAngularMomentumQuantumNumber
URI: http://qudt.org/vocab/quantitykind/OrbitalAngularMomentumQuantumNumber
The "Principal Quantum Number" describes the electron shell, or energy level, of an atom. The value of \(n\) ranges from 1 to the shell containing the outermost electron of that atom.
quantitykind:OrbitalRadialDistance
URI: http://qudt.org/vocab/quantitykind/OrbitalRadialDistance
quantitykind:OrderOfReflection
URI: http://qudt.org/vocab/quantitykind/OrderOfReflection
"Order of Reflection" is \(n\) in the Bragg's Law equation.
quantitykind:OsmoticCoefficient
URI: http://qudt.org/vocab/quantitykind/OsmoticCoefficient
quantitykind:OsmoticPressure
URI: http://qudt.org/vocab/quantitykind/OsmoticPressure
quantitykind:OverRangeDistance
URI: http://qudt.org/vocab/quantitykind/OverRangeDistance
quantitykind:PRODUCT-OF-INERTIA
URI: http://qudt.org/vocab/quantitykind/PRODUCT-OF-INERTIA
quantitykind:PRODUCT-OF-INERTIA_X
URI: http://qudt.org/vocab/quantitykind/PRODUCT-OF-INERTIA_X
quantitykind:PRODUCT-OF-INERTIA_Y
URI: http://qudt.org/vocab/quantitykind/PRODUCT-OF-INERTIA_Y
quantitykind:PRODUCT-OF-INERTIA_Z
URI: http://qudt.org/vocab/quantitykind/PRODUCT-OF-INERTIA_Z
quantitykind:PackingFraction
URI: http://qudt.org/vocab/quantitykind/PackingFraction
quantitykind:PartialPressure
URI: http://qudt.org/vocab/quantitykind/PartialPressure
quantitykind:ParticleCurrent
URI: http://qudt.org/vocab/quantitykind/ParticleCurrent
quantitykind:ParticleFluence
URI: http://qudt.org/vocab/quantitykind/ParticleFluence
quantitykind:ParticleFluenceRate
URI: http://qudt.org/vocab/quantitykind/ParticleFluenceRate
quantitykind:ParticleNumberDensity
URI: http://qudt.org/vocab/quantitykind/ParticleNumberDensity
quantitykind:ParticlePositionVector
URI: http://qudt.org/vocab/quantitykind/ParticlePositionVector
quantitykind:ParticleSourceDensity
URI: http://qudt.org/vocab/quantitykind/ParticleSourceDensity
quantitykind:PeltierCoefficient
URI: http://qudt.org/vocab/quantitykind/PeltierCoefficient
quantitykind:PermeabilityRatio
URI: http://qudt.org/vocab/quantitykind/PermeabilityRatio
quantitykind:PhaseCoefficient
URI: http://qudt.org/vocab/quantitykind/PhaseCoefficient
The phase coefficient is the amount of phase shift that occurs as the wave travels one meter. Increasing the loss of the material, via the manipulation of the material's conductivity, will decrease the wavelength (increase \(\beta\)) and increase the attenuation coefficient (increase \(\alpha\)).
quantitykind:PhaseDifference
URI: http://qudt.org/vocab/quantitykind/PhaseDifference
"Phase Difference} is the difference, expressed in electrical degrees or time, between two waves having the same frequency and referenced to the same point in time. Two oscillators that have the same frequency and different phases have a phase difference, and the oscillators are said to be out of phase with each other. The amount by which such oscillators are out of step with each other can be expressed in degrees from \SI{0}{\degree} to \SI{360}{\degree}, or in radians from 0 to \num{2\pi". If the phase difference is 180 degrees (\(\pi\) radians), then the two oscillators are said to be in antiphase.
quantitykind:PhaseSpeedOfSound
URI: http://qudt.org/vocab/quantitykind/PhaseSpeedOfSound
quantitykind:PhononMeanFreePath
URI: http://qudt.org/vocab/quantitykind/PhononMeanFreePath
quantitykind:PhotoThresholdOfAwarenessFunction
URI: http://qudt.org/vocab/quantitykind/PhotoThresholdOfAwarenessFunction
"Photo Threshold of Awareness Function" is the ability of the human eye to detect a light that results in a \(1^o\) radial angle at the eye with a given duration (temporal summation).
quantitykind:PhotonIntensity
URI: http://qudt.org/vocab/quantitykind/PhotonIntensity
A measure of flux of photons per solid angle
quantitykind:PhotonRadiance
URI: http://qudt.org/vocab/quantitykind/PhotonRadiance
A measure of flux of photons per surface area per solid angle
quantitykind:PhotosyntheticPhotonFlux
URI: http://qudt.org/vocab/quantitykind/PhotosyntheticPhotonFlux
quantitykind:PhotosyntheticPhotonFluxDensity
URI: http://qudt.org/vocab/quantitykind/PhotosyntheticPhotonFluxDensity
quantitykind:PlanckFunction
URI: http://qudt.org/vocab/quantitykind/PlanckFunction
The \(\textit{Planck function}\) is used to compute the radiance emitted from objects that radiate like a perfect "Black Body". The inverse of the \(\textit{Planck Function}\) is used to find the \(\textit{Brightness Temperature}\) of an object. The precise formula for the Planck Function depends on whether the radiance is determined on a \(\textit{per unit wavelength}\) or a \(\textit{per unit frequency}\). In the ISO System of Quantities, \(\textit{Planck Function}\) is defined by the formula: \(Y = -G/T\), where \(G\) is Gibbs Energy and \(T\) is thermodynamic temperature.
quantitykind:PlaneAngle
URI: http://qudt.org/vocab/quantitykind/PlaneAngle
The inclination to each other of two intersecting lines, measured by the arc of a circle intercepted between the two lines forming the angle, the center of the circle being the point of intersection. An acute angle is less than \(90^\circ\), a right angle \(90^\circ\); an obtuse angle, more than \(90^\circ\) but less than \(180^\circ\); a straight angle, \(180^\circ\); a reflex angle, more than \(180^\circ\) but less than \(360^\circ\); a perigon, \(360^\circ\). Any angle not a multiple of \(90^\circ\) is an oblique angle. If the sum of two angles is \(90^\circ\), they are complementary angles; if \(180^\circ\), supplementary angles; if \(360^\circ\), explementary angles.
quantitykind:PolarMomentOfInertia
URI: http://qudt.org/vocab/quantitykind/PolarMomentOfInertia
quantitykind:Polarizability
URI: http://qudt.org/vocab/quantitykind/Polarizability
"Polarizability" is the relative tendency of a charge distribution, like the electron cloud of an atom or molecule, to be distorted from its normal shape by an external electric field, which may be caused by the presence of a nearby ion or dipole. The electronic polarizability \(\alpha\) is defined as the ratio of the induced dipole moment of an atom to the electric field that produces this dipole moment. Polarizability is often a scalar valued quantity, however in the general case it is tensor-valued.
quantitykind:PolarizationField
URI: http://qudt.org/vocab/quantitykind/PolarizationField
quantitykind:PotentialEnergy
URI: http://qudt.org/vocab/quantitykind/PotentialEnergy
quantitykind:Power
URI: http://qudt.org/vocab/quantitykind/Power
Power is the rate at which work is performed or energy is transmitted, or the amount of energy required or expended for a given unit of time. As a rate of change of work done or the energy of a subsystem, power is: \(P = W/t\), where \(P\) is power, \(W\) is work and {t} is time.
quantitykind:PowerAreaPerSolidAngle
URI: http://qudt.org/vocab/quantitykind/PowerAreaPerSolidAngle
quantitykind:PowerFactor
URI: http://qudt.org/vocab/quantitykind/PowerFactor
"Power Factor", under periodic conditions, is the ratio of the absolute value of the active power \(P\) to the apparent power \(S\).
quantitykind:PowerPerAreaAngle
URI: http://qudt.org/vocab/quantitykind/PowerPerAreaAngle
quantitykind:PowerPerAreaQuarticTemperature
URI: http://qudt.org/vocab/quantitykind/PowerPerAreaQuarticTemperature
quantitykind:PowerPerElectricCharge
URI: http://qudt.org/vocab/quantitykind/PowerPerElectricCharge
quantitykind:PressureBurningRateConstant
URI: http://qudt.org/vocab/quantitykind/PressureBurningRateConstant
quantitykind:PressureBurningRateIndex
URI: http://qudt.org/vocab/quantitykind/PressureBurningRateIndex
quantitykind:PressureCoefficient
URI: http://qudt.org/vocab/quantitykind/PressureCoefficient
quantitykind:PressurePercentage
URI: http://qudt.org/vocab/quantitykind/PressurePercentage
quantitykind:PrincipalQuantumNumber
URI: http://qudt.org/vocab/quantitykind/PrincipalQuantumNumber
The "Principal Quantum Number" describes the electron shell, or energy level, of an atom. The value of \(n\) ranges from 1 to the shell containing the outermost electron of that atom.
quantitykind:PropagationCoefficient
URI: http://qudt.org/vocab/quantitykind/PropagationCoefficient
The propagation constant, symbol \(\gamma\), for a given system is defined by the ratio of the amplitude at the source of the wave to the amplitude at some distance x.
quantitykind:PropellantBurnRate
URI: http://qudt.org/vocab/quantitykind/PropellantBurnRate
quantitykind:PropellantMeanBulkTemperature
URI: http://qudt.org/vocab/quantitykind/PropellantMeanBulkTemperature
quantitykind:PropellantTemperature
URI: http://qudt.org/vocab/quantitykind/PropellantTemperature
quantitykind:QualityFactor
URI: http://qudt.org/vocab/quantitykind/QualityFactor
"Quality Factor", of a resonant circuit, is a measure of the "goodness" or quality of a resonant circuit. A higher value for this figure of merit correspondes to a more narrow bandwith, which is desirable in many applications. More formally, \(Q\) is the ratio of power stored to power dissipated in the circuit reactance and resistance, respectively
quantitykind:QuarticElectricDipoleMomentPerCubicEnergy
URI: http://qudt.org/vocab/quantitykind/QuarticElectricDipoleMomentPerCubicEnergy
quantitykind:RadialDistance
URI: http://qudt.org/vocab/quantitykind/RadialDistance
In classical geometry, the "Radial Distance" is a coordinate in polar coordinate systems (r, \(\theta\)). Basically the radial distance is the scalar Euclidean distance between a point and the origin of the system of coordinates.
quantitykind:RadiantEmmitance
URI: http://qudt.org/vocab/quantitykind/RadiantEmmitance
quantitykind:RadiantEnergyDensity
URI: http://qudt.org/vocab/quantitykind/RadiantEnergyDensity
quantitykind:RadiantExposure
URI: http://qudt.org/vocab/quantitykind/RadiantExposure
quantitykind:RadiantFluenceRate
URI: http://qudt.org/vocab/quantitykind/RadiantFluenceRate
quantitykind:RadiantIntensity
URI: http://qudt.org/vocab/quantitykind/RadiantIntensity
quantitykind:RadiativeHeatTransfer
URI: http://qudt.org/vocab/quantitykind/RadiativeHeatTransfer
"Radiative Heat Transfer" is proportional to \((T_1^4 - T_2^4)\) and area of the surface, where \(T_1\) and \(T_2\) are thermodynamic temperatures of two black surfaces, for non totally black surfaces an additional factor less than 1 is needed.
quantitykind:RadiusOfCurvature
URI: http://qudt.org/vocab/quantitykind/RadiusOfCurvature
quantitykind:RatioOfSpecificHeatCapacities
URI: http://qudt.org/vocab/quantitykind/RatioOfSpecificHeatCapacities
The specific heat ratio of a gas is the ratio of the specific heat at constant pressure, \(c_p\), to the specific heat at constant volume, \(c_V\). It is sometimes referred to as the "adiabatic index} or the \textit{heat capacity ratio} or the \textit{isentropic expansion factor} or the \textit{adiabatic exponent} or the \textit{isentropic exponent".
quantitykind:ReactivePower
URI: http://qudt.org/vocab/quantitykind/ReactivePower
"Reactive Power}, for a linear two-terminal element or two-terminal circuit, under sinusoidal conditions, is the quantity equal to the product of the apparent power \(S\) and the sine of the displacement angle \(\psi\). The absolute value of the reactive power is equal to the non-active power. The ISO (and SI) unit for reactive power is the voltampere. The special name \(\textit{var}\) and symbol \(\textit{var}\) are given in IEC 60027 1.
quantitykind:ReactorTimeConstant
URI: http://qudt.org/vocab/quantitykind/ReactorTimeConstant
quantitykind:RecombinationCoefficient
URI: http://qudt.org/vocab/quantitykind/RecombinationCoefficient
quantitykind:ReflectanceFactor
URI: http://qudt.org/vocab/quantitykind/ReflectanceFactor
quantitykind:RefractiveIndex
URI: http://qudt.org/vocab/quantitykind/RefractiveIndex
quantitykind:RelativeAtomicMass
URI: http://qudt.org/vocab/quantitykind/RelativeAtomicMass
quantitykind:RelativeHumidity
URI: http://qudt.org/vocab/quantitykind/RelativeHumidity
\(\textit{Relative Humidity}\) is the ratio of the partial pressure of water vapor in an air-water mixture to the saturated vapor pressure of water at a prescribed temperature. The relative humidity of air depends not only on temperature but also on the pressure of the system of interest. \(\textit{Relative Humidity}\) is also referred to as \(\textit{Relative Partial Pressure}\). Relative partial pressure is often referred to as \(RH\) and expressed in percent.
quantitykind:RelativeLuminousFlux
URI: http://qudt.org/vocab/quantitykind/RelativeLuminousFlux
quantitykind:RelativeMassConcentrationOfVapour
URI: http://qudt.org/vocab/quantitykind/RelativeMassConcentrationOfVapour
quantitykind:RelativeMassDefect
URI: http://qudt.org/vocab/quantitykind/RelativeMassDefect
quantitykind:RelativeMassDensity
URI: http://qudt.org/vocab/quantitykind/RelativeMassDensity
quantitykind:RelativeMassExcess
URI: http://qudt.org/vocab/quantitykind/RelativeMassExcess
quantitykind:RelativeMassRatioOfVapour
URI: http://qudt.org/vocab/quantitykind/RelativeMassRatioOfVapour
quantitykind:RelativeMolecularMass
URI: http://qudt.org/vocab/quantitykind/RelativeMolecularMass
quantitykind:RelativePartialPressure
URI: http://qudt.org/vocab/quantitykind/RelativePartialPressure
quantitykind:RelativePermittivity
URI: http://qudt.org/vocab/quantitykind/RelativePermittivity
quantitykind:RelativePressureCoefficient
URI: http://qudt.org/vocab/quantitykind/RelativePressureCoefficient
quantitykind:ResidualResistivity
URI: http://qudt.org/vocab/quantitykind/ResidualResistivity
quantitykind:ResistancePercentage
URI: http://qudt.org/vocab/quantitykind/ResistancePercentage
quantitykind:ResonanceEnergy
URI: http://qudt.org/vocab/quantitykind/ResonanceEnergy
quantitykind:ResonanceEscapeProbability
URI: http://qudt.org/vocab/quantitykind/ResonanceEscapeProbability
quantitykind:ResonanceEscapeProbabilityForFission
URI: http://qudt.org/vocab/quantitykind/ResonanceEscapeProbabilityForFission
quantitykind:RespiratoryRate
URI: http://qudt.org/vocab/quantitykind/RespiratoryRate
quantitykind:RestMass
URI: http://qudt.org/vocab/quantitykind/RestMass
The \(\textit{Rest Mass}\), the invariant mass, intrinsic mass, proper mass, or (in the case of bound systems or objects observed in their center of momentum frame) simply mass, is a characteristic of the total energy and momentum of an object or a system of objects that is the same in all frames of reference related by Lorentz transformations. The mass of a particle type X (electron, proton or neutron) when that particle is at rest. For an electron: \(m_e = 9,109 382 15(45) 10^{-31} kg\), for a proton: \(m_p = 1,672 621 637(83) 10^{-27} kg\), for a neutron: \(m_n = 1,674 927 211(84) 10^{-27} kg\). Rest mass is often denoted \(m_0\).
quantitykind:ReverberationTime
URI: http://qudt.org/vocab/quantitykind/ReverberationTime
quantitykind:RichardsonConstant
URI: http://qudt.org/vocab/quantitykind/RichardsonConstant
quantitykind:RocketAtmosphericTransverseForce
URI: http://qudt.org/vocab/quantitykind/RocketAtmosphericTransverseForce
quantitykind:ScalarMagneticPotential
URI: http://qudt.org/vocab/quantitykind/ScalarMagneticPotential
quantitykind:SecondAxialMomentOfArea
URI: http://qudt.org/vocab/quantitykind/SecondAxialMomentOfArea
quantitykind:SecondMomentOfArea
URI: http://qudt.org/vocab/quantitykind/SecondMomentOfArea
quantitykind:SecondOrderReactionRateConstant
URI: http://qudt.org/vocab/quantitykind/SecondOrderReactionRateConstant
quantitykind:SecondPolarMomentOfArea
URI: http://qudt.org/vocab/quantitykind/SecondPolarMomentOfArea
quantitykind:SecondStageMassRatio
URI: http://qudt.org/vocab/quantitykind/SecondStageMassRatio
quantitykind:SeebeckCoefficient
URI: http://qudt.org/vocab/quantitykind/SeebeckCoefficient
quantitykind:SerumOrPlasmaLevel
URI: http://qudt.org/vocab/quantitykind/SerumOrPlasmaLevel
quantitykind:ShearModulus
URI: http://qudt.org/vocab/quantitykind/ShearModulus
The Shear Modulus or modulus of rigidity, denoted by \(G\), or sometimes \(S\) or \(\mu\), is defined as the ratio of shear stress to the shear strain.
quantitykind:Short-RangeOrderParameter
URI: http://qudt.org/vocab/quantitykind/Short-RangeOrderParameter
quantitykind:SignalDetectionThreshold
URI: http://qudt.org/vocab/quantitykind/SignalDetectionThreshold
quantitykind:SingleStageLauncherMassRatio
URI: http://qudt.org/vocab/quantitykind/SingleStageLauncherMassRatio
quantitykind:Slowing-DownArea
URI: http://qudt.org/vocab/quantitykind/Slowing-DownArea
quantitykind:Slowing-DownDensity
URI: http://qudt.org/vocab/quantitykind/Slowing-DownDensity
quantitykind:Slowing-DownLength
URI: http://qudt.org/vocab/quantitykind/Slowing-DownLength
quantitykind:SoilAdsorptionCoefficient
URI: http://qudt.org/vocab/quantitykind/SoilAdsorptionCoefficient
quantitykind:SolidStateDiffusionLength
URI: http://qudt.org/vocab/quantitykind/SolidStateDiffusionLength
quantitykind:Solubility_Water
URI: http://qudt.org/vocab/quantitykind/Solubility_Water
quantitykind:SoundEnergyDensity
URI: http://qudt.org/vocab/quantitykind/SoundEnergyDensity
Sound energy density is the time-averaged sound energy in a given volume divided by that volume. The sound energy density or sound density (symbol \(E\) or \(w\)) is an adequate measure to describe the sound field at a given point as a sound energy value.
quantitykind:SoundExposureLevel
URI: http://qudt.org/vocab/quantitykind/SoundExposureLevel
Sound Exposure Level abbreviated as \(SEL\) and \(LAE\), is the total noise energy produced from a single noise event.
quantitykind:SoundParticleAcceleration
URI: http://qudt.org/vocab/quantitykind/SoundParticleAcceleration
In a compressible sound transmission medium - mainly air - air particles get an accelerated motion: the particle acceleration or sound acceleration with the symbol a in \(m/s2\). In acoustics or physics, acceleration (symbol: \(a\)) is defined as the rate of change (or time derivative) of velocity.
quantitykind:SoundParticleDisplacement
URI: http://qudt.org/vocab/quantitykind/SoundParticleDisplacement
quantitykind:SoundParticleVelocity
URI: http://qudt.org/vocab/quantitykind/SoundParticleVelocity
quantitykind:SoundPower
URI: http://qudt.org/vocab/quantitykind/SoundPower
Sound power or acoustic power \(P_a\) is a measure of sonic energy \(E\) per time \(t\) unit. It is measured in watts and can be computed as sound intensity (\(I\)) times area (\(A\)).
quantitykind:SoundPowerLevel
URI: http://qudt.org/vocab/quantitykind/SoundPowerLevel
Sound Power Level abbreviated as \(SWL\) expresses sound power more practically as a relation to the threshold of hearing - 10-12 W - in a logarithmic scale.
quantitykind:SoundPressureLevel
URI: http://qudt.org/vocab/quantitykind/SoundPressureLevel
Sound pressure level (\(SPL\)) or sound level is a logarithmic measure of the effective sound pressure of a sound relative to a reference value. It is measured in decibels (dB) above a standard reference level.
quantitykind:SoundReductionIndex
URI: http://qudt.org/vocab/quantitykind/SoundReductionIndex
quantitykind:SoundVolumeVelocity
URI: http://qudt.org/vocab/quantitykind/SoundVolumeVelocity
Sound Volume Velocity is the product of particle velocity \(v\) and the surface area \(S\) through which an acoustic wave of frequency \(f\) propagates. Also, the surface integral of the normal component of the sound particle velocity over the cross-section (through which the sound propagates). It is used to calculate acoustic impedance.
quantitykind:SourceVoltage
URI: http://qudt.org/vocab/quantitykind/SourceVoltage
"Source Voltage}, also referred to as \textit{Source Tension" is the voltage between the two terminals of a voltage source when there is no electric current through the source. The name "electromotive force} with the abbreviation \textit{EMF" and the symbol \(E\) is deprecated.
quantitykind:SourceVoltageBetweenSubstances
URI: http://qudt.org/vocab/quantitykind/SourceVoltageBetweenSubstances
quantitykind:SpatialSummationFunction
URI: http://qudt.org/vocab/quantitykind/SpatialSummationFunction
quantitykind:SpecificAcousticImpedance
URI: http://qudt.org/vocab/quantitykind/SpecificAcousticImpedance
quantitykind:SpecificActivity
URI: http://qudt.org/vocab/quantitykind/SpecificActivity
quantitykind:SpecificEnergy
URI: http://qudt.org/vocab/quantitykind/SpecificEnergy
\(\textbf{Specific Energy}\) is defined as the energy per unit mass. Common metric units are \(J/kg\). It is an intensive property. Contrast this with energy, which is an extensive property. There are two main types of specific energy: potential energy and specific kinetic energy. Others are the \(\textbf{gray}\) and \(\textbf{sievert}\), which are measures for the absorption of radiation. The concept of specific energy applies to a particular or theoretical way of extracting useful energy from the material considered that is usually implied by context. These intensive properties are each symbolized by using the lower case letter of the symbol for the corresponding extensive property, which is symbolized by a capital letter. For example, the extensive thermodynamic property enthalpy is symbolized by \(H\); specific enthalpy is symbolized by \(h\).
quantitykind:SpecificEnergyImparted
URI: http://qudt.org/vocab/quantitykind/SpecificEnergyImparted
quantitykind:SpecificEnthalpy
URI: http://qudt.org/vocab/quantitykind/SpecificEnthalpy
\(\textit{Specific Enthalpy}\) is enthalpy per mass of substance involved. Specific enthalpy is denoted by a lower case h, with dimension of energy per mass (SI unit: joule/kg). In thermodynamics, \(\textit{enthalpy}\) is the sum of the internal energy U and the product of pressure p and volume V of a system: \(H = U + pV\). The internal energy U and the work term pV have dimension of energy, in SI units this is joule; the extensive (linear in size) quantity H has the same dimension.
quantitykind:SpecificEntropy
URI: http://qudt.org/vocab/quantitykind/SpecificEntropy
quantitykind:SpecificGibbsEnergy
URI: http://qudt.org/vocab/quantitykind/SpecificGibbsEnergy
quantitykind:SpecificHeatCapacity
URI: http://qudt.org/vocab/quantitykind/SpecificHeatCapacity
quantitykind:SpecificHeatCapacityAtConstantPressure
URI: http://qudt.org/vocab/quantitykind/SpecificHeatCapacityAtConstantPressure
quantitykind:SpecificHeatCapacityAtConstantVolume
URI: http://qudt.org/vocab/quantitykind/SpecificHeatCapacityAtConstantVolume
quantitykind:SpecificHeatCapacityAtSaturation
URI: http://qudt.org/vocab/quantitykind/SpecificHeatCapacityAtSaturation
quantitykind:SpecificHeatPressure
URI: http://qudt.org/vocab/quantitykind/SpecificHeatPressure
quantitykind:SpecificHeatVolume
URI: http://qudt.org/vocab/quantitykind/SpecificHeatVolume
quantitykind:SpecificHeatsRatio
URI: http://qudt.org/vocab/quantitykind/SpecificHeatsRatio
The ratio of specific heats, for the exhaust gases adiabatic gas constant, is the relative amount of compression/expansion energy that goes into temperature \(T\) versus pressure \(P\) can be characterized by the heat capacity ratio: \(\gamma\frac{C_P}{C_V}\), where \(C_P\) is the specific heat (also called heat capacity) at constant pressure, while \(C_V\) is the specific heat at constant volume.
quantitykind:SpecificHelmholtzEnergy
URI: http://qudt.org/vocab/quantitykind/SpecificHelmholtzEnergy
Energy has corresponding intensive (size-independent) properties for pure materials. A corresponding intensive property is \(\textit{Specific Helmholtz Energy}\), which is \(\textit{Helmholz Energy}\) per mass of substance involved.\( \textit{Specific Helmholz Energy}\) is denoted by a lower case u, with dimension of energy per mass (SI unit: joule/kg).
quantitykind:SpecificImpulse
URI: http://qudt.org/vocab/quantitykind/SpecificImpulse
The impulse produced by a rocket divided by the mass \(mp\) of propellant consumed. Specific impulse \({I_{sp}}\) is a widely used measure of performance for chemical, nuclear, and electric rockets. It is usually given in seconds for both U.S. Customary and International System (SI) units. The impulse produced by a rocket is the thrust force \(F\) times its duration \(t\) in seconds. \(I_{sp}\) is the thrust per unit mass flowrate, but with \(g_o\), is the thrust per weight flowrate. The specific impulse is given by the equation: \(I_{sp} = \frac{F}{\dot{m}g_o}\).
quantitykind:SpecificImpulseByMass
URI: http://qudt.org/vocab/quantitykind/SpecificImpulseByMass
quantitykind:SpecificImpulseByWeight
URI: http://qudt.org/vocab/quantitykind/SpecificImpulseByWeight
quantitykind:SpecificInternalEnergy
URI: http://qudt.org/vocab/quantitykind/SpecificInternalEnergy
quantitykind:SpecificOpticalRotatoryPower
URI: http://qudt.org/vocab/quantitykind/SpecificOpticalRotatoryPower
quantitykind:SpecificVolume
URI: http://qudt.org/vocab/quantitykind/SpecificVolume
"Specific Volume" (\(\nu\)) is the volume occupied by a unit of mass of a material. It is equal to the inverse of density.
quantitykind:SpectralAngularCrossSection
URI: http://qudt.org/vocab/quantitykind/SpectralAngularCrossSection
"Spectral Angular Cross-section" is the cross-section for ejecting or scattering a particle into an elementary cone with energy \(E\) in an energy interval, divided by the solid angle \(d\Omega\) of that cone and the range \(dE\) of that interval.
quantitykind:SpectralCrossSection
URI: http://qudt.org/vocab/quantitykind/SpectralCrossSection
"Spectral Cross-section" is the cross-section for a process in which the energy of the ejected or scattered particle is in an interval of energy, divided by the range \(dE\) of this interval.
quantitykind:SpectralLuminousEfficiency
URI: http://qudt.org/vocab/quantitykind/SpectralLuminousEfficiency
quantitykind:SpectralRadiantEnergyDensity
URI: http://qudt.org/vocab/quantitykind/SpectralRadiantEnergyDensity
quantitykind:SpeedOfLight
URI: http://qudt.org/vocab/quantitykind/SpeedOfLight
The quantity kind \(\textbf{Speed of Light}\) is the speed of electomagnetic waves in a given medium.
quantitykind:SphericalIlluminance
URI: http://qudt.org/vocab/quantitykind/SphericalIlluminance
Spherical illuminance is equal to quotient of the total luminous flux \(\Phi_v\) incident on a small sphere by the cross section area of that sphere.
quantitykind:SpinQuantumNumber
URI: http://qudt.org/vocab/quantitykind/SpinQuantumNumber
quantitykind:StagePropellantMass
URI: http://qudt.org/vocab/quantitykind/StagePropellantMass
quantitykind:StageStructuralMass
URI: http://qudt.org/vocab/quantitykind/StageStructuralMass
quantitykind:StandardAbsoluteActivity
URI: http://qudt.org/vocab/quantitykind/StandardAbsoluteActivity
The "Standard Absolute Activity" is proportional to the absoulte activity of the pure substance \(B\) at the same temperature and pressure multiplied by the standard pressure.
quantitykind:StandardChemicalPotential
URI: http://qudt.org/vocab/quantitykind/StandardChemicalPotential
quantitykind:StandardGravitationalParameter
URI: http://qudt.org/vocab/quantitykind/StandardGravitationalParameter
In celestial mechanics the standard gravitational parameter of a celestial body is the product of the gravitational constant G and the mass M of the body. Expressed as \(\mu = G \cdot M\). The SI units of the standard gravitational parameter are \(m^{3}s^{-2}\).
quantitykind:StaticFrictionCoefficient
URI: http://qudt.org/vocab/quantitykind/StaticFrictionCoefficient
quantitykind:StaticPressure
URI: http://qudt.org/vocab/quantitykind/StaticPressure
"Static Pressure" is the pressure at a nominated point in a fluid. Every point in a steadily flowing fluid, regardless of the fluid speed at that point, has its own static pressure \(P\), dynamic pressure \(q\), and total pressure \(P_0\). The total pressure is the sum of the dynamic and static pressures, that is \(P_0 = P + q\).
quantitykind:StatisticalWeight
URI: http://qudt.org/vocab/quantitykind/StatisticalWeight
quantitykind:StochasticProcess
URI: http://qudt.org/vocab/quantitykind/StochasticProcess
quantitykind:StoichiometricNumber
URI: http://qudt.org/vocab/quantitykind/StoichiometricNumber
quantitykind:StrainEnergyDensity
URI: http://qudt.org/vocab/quantitykind/StrainEnergyDensity
quantitykind:Stress
URI: http://qudt.org/vocab/quantitykind/Stress
Stress is a measure of the average amount of force exerted per unit area of a surface within a deformable body on which internal forces act. In other words, it is a measure of the intensity or internal distribution of the total internal forces acting within a deformable body across imaginary surfaces. These internal forces are produced between the particles in the body as a reaction to external forces applied on the body. Stress is defined as \({\rm{Stress}} = \frac{F}{A}\).
quantitykind:StructuralEfficiency
URI: http://qudt.org/vocab/quantitykind/StructuralEfficiency
quantitykind:StructureFactor
URI: http://qudt.org/vocab/quantitykind/StructureFactor
quantitykind:SuperconductionTransitionTemperature
URI: http://qudt.org/vocab/quantitykind/SuperconductionTransitionTemperature
quantitykind:SuperconductorEnergyGap
URI: http://qudt.org/vocab/quantitykind/SuperconductorEnergyGap
quantitykind:SurfaceActivityDensity
URI: http://qudt.org/vocab/quantitykind/SurfaceActivityDensity
quantitykind:SurfaceCoefficientOfHeatTransfer
URI: http://qudt.org/vocab/quantitykind/SurfaceCoefficientOfHeatTransfer
quantitykind:SystolicBloodPressure
URI: http://qudt.org/vocab/quantitykind/SystolicBloodPressure
quantitykind:TARGET-BOGIE-MASS
URI: http://qudt.org/vocab/quantitykind/TARGET-BOGIE-MASS
quantitykind:TemperatureAmountOfSubstance
URI: http://qudt.org/vocab/quantitykind/TemperatureAmountOfSubstance
quantitykind:TemperaturePerMagneticFluxDensity
URI: http://qudt.org/vocab/quantitykind/TemperaturePerMagneticFluxDensity
quantitykind:TemperaturePerTime
URI: http://qudt.org/vocab/quantitykind/TemperaturePerTime
quantitykind:TemperatureRatio
URI: http://qudt.org/vocab/quantitykind/TemperatureRatio
quantitykind:TemporalSummationFunction
URI: http://qudt.org/vocab/quantitykind/TemporalSummationFunction
quantitykind:ThermalConductance
URI: http://qudt.org/vocab/quantitykind/ThermalConductance
quantitykind:ThermalConductivity
URI: http://qudt.org/vocab/quantitykind/ThermalConductivity
In physics, thermal conductivity, \(k\) (also denoted as \(\lambda\)), is the property of a material's ability to conduct heat. It appears primarily in Fourier's Law for heat conduction and is the areic heat flow rate divided by temperature gradient.
quantitykind:ThermalDiffusionFactor
URI: http://qudt.org/vocab/quantitykind/ThermalDiffusionFactor
quantitykind:ThermalDiffusionRatio
URI: http://qudt.org/vocab/quantitykind/ThermalDiffusionRatio
quantitykind:ThermalDiffusionRatioCoefficient
URI: http://qudt.org/vocab/quantitykind/ThermalDiffusionRatioCoefficient
quantitykind:ThermalDiffusivity
URI: http://qudt.org/vocab/quantitykind/ThermalDiffusivity
In heat transfer analysis, thermal diffusivity (usually denoted \(\alpha\) but \(a\), \(\kappa\),\(k\), and \(D\) are also used) is the thermal conductivity divided by density and specific heat capacity at constant pressure. The formula is: \(\alpha = {k \over {\rho c_p}}\), where k is thermal conductivity (\(W/(\mu \cdot K)\)), \(\rho\) is density (\(kg/m^{3}\)), and \(c_p\) is specific heat capacity (\(\frac{J}{(kg \cdot K)}\)) .The denominator \(\rho c_p\), can be considered the volumetric heat capacity (\(\frac{J}{(m^{3} \cdot K)}\)).
quantitykind:ThermalEfficiency
URI: http://qudt.org/vocab/quantitykind/ThermalEfficiency
quantitykind:ThermalEnergy
URI: http://qudt.org/vocab/quantitykind/ThermalEnergy
"Thermal Energy} is the portion of the thermodynamic or internal energy of a system that is responsible for the temperature of the system. From a macroscopic thermodynamic description, the thermal energy of a system is given by its constant volume specific heat capacity C(T), a temperature coefficient also called thermal capacity, at any given absolute temperature (T): \(U_{thermal} = C(T) \cdot T\).
quantitykind:ThermalEnergyLength
URI: http://qudt.org/vocab/quantitykind/ThermalEnergyLength
quantitykind:ThermalInsulance
URI: http://qudt.org/vocab/quantitykind/ThermalInsulance
\(\textit{Thermal Insulance}\) is the reduction of heat transfer (the transfer of thermal energy between objects of differing temperature) between objects in thermal contact or in range of radiative influence. In building technology, this quantity is often called \(\textit{Thermal Resistance}\), with the symbol \(R\).
quantitykind:ThermalResistance
URI: http://qudt.org/vocab/quantitykind/ThermalResistance
\(\textit{Thermal Resistance}\) is a heat property and a measure of a temperature difference by which an object or material resists a heat flow (heat per time unit or thermal resistance). Thermal resistance is the reciprocal thermal conductance. the thermodynamic temperature difference divided by heat flow rate. Thermal resistance \(R\) has the units \(\frac{m^2 \cdot K}{W}\).
quantitykind:ThermalResistivity
URI: http://qudt.org/vocab/quantitykind/ThermalResistivity
The reciprocal of thermal conductivity is thermal resistivity, measured in \(kelvin-metres\) per watt (\(K \cdot m/W\)).
quantitykind:ThermalUtilizationFactor
URI: http://qudt.org/vocab/quantitykind/ThermalUtilizationFactor
quantitykind:ThermalUtilizationFactorForFission
URI: http://qudt.org/vocab/quantitykind/ThermalUtilizationFactorForFission
quantitykind:ThermodynamicCriticalMagneticFluxDensity
URI: http://qudt.org/vocab/quantitykind/ThermodynamicCriticalMagneticFluxDensity
quantitykind:ThermodynamicEnergy
URI: http://qudt.org/vocab/quantitykind/ThermodynamicEnergy
quantitykind:ThermodynamicEntropy
URI: http://qudt.org/vocab/quantitykind/ThermodynamicEntropy
Thermodynamic Entropy is a measure of the unavailability of a system’s energy to do work. It is a measure of the randomness of molecules in a system and is central to the second law of thermodynamics and the fundamental thermodynamic relation, which deal with physical processes and whether they occur spontaneously. The dimensions of entropy are energy divided by temperature, which is the same as the dimensions of Boltzmann's constant (\(kB\)) and heat capacity. The SI unit of entropy is \(joule\ per\ kelvin\). [Wikipedia]
quantitykind:ThermodynamicTemperature
URI: http://qudt.org/vocab/quantitykind/ThermodynamicTemperature
quantitykind:ThomsonCoefficient
URI: http://qudt.org/vocab/quantitykind/ThomsonCoefficient
quantitykind:Thrust
URI: http://qudt.org/vocab/quantitykind/Thrust
Thrust is a reaction force described quantitatively by Newton's Second and Third Laws. When a system expels or accelerates mass in one direction the accelerated mass will cause a proportional but opposite force on that system. The pushing or pulling force developed by an aircraft engine or a rocket engine. The force exerted in any direction by a fluid jet or by a powered screw, as, the thrust of an antitorque rotor. Specifically, in rocketry, \( F\,= m\cdot v\) where m is propellant mass flow and v is exhaust velocity relative to the vehicle. Also called momentum thrust.
quantitykind:ThrustCoefficient
URI: http://qudt.org/vocab/quantitykind/ThrustCoefficient
quantitykind:ThrustToMassRatio
URI: http://qudt.org/vocab/quantitykind/ThrustToMassRatio
quantitykind:ThrustToWeightRatio
URI: http://qudt.org/vocab/quantitykind/ThrustToWeightRatio
quantitykind:ThrusterPowerToThrustEfficiency
URI: http://qudt.org/vocab/quantitykind/ThrusterPowerToThrustEfficiency
quantitykind:TimeAveragedSoundIntensity
URI: http://qudt.org/vocab/quantitykind/TimeAveragedSoundIntensity
quantitykind:TimeTemperature
URI: http://qudt.org/vocab/quantitykind/TimeTemperature
quantitykind:Torque
URI: http://qudt.org/vocab/quantitykind/Torque
In physics, a torque (\(\tau\)) is a vector that measures the tendency of a force to rotate an object about some axis. The magnitude of a torque is defined as force times its lever arm. Just as a force is a push or a pull, a torque can be thought of as a twist. The SI unit for torque is newton meters (\(N m\)). In U.S. customary units, it is measured in foot pounds (ft lbf) (also known as "pounds feet"). Mathematically, the torque on a particle (which has the position r in some reference frame) can be defined as the cross product: \(τ = r x F\) where, r is the particle's position vector relative to the fulcrum F is the force acting on the particles, or, more generally, torque can be defined as the rate of change of angular momentum: \(τ = dL/dt\) where, L is the angular momentum vector t stands for time.
quantitykind:TorquePerLength
URI: http://qudt.org/vocab/quantitykind/TorquePerLength
quantitykind:TotalAngularMomentum
URI: http://qudt.org/vocab/quantitykind/TotalAngularMomentum
"Total Angular Momentum" combines both the spin and orbital angular momentum of all particles and fields. In atomic and nuclear physics, orbital angular momentum is usually denoted by \(l\) or \(L\) instead of \(\Lambda\). The magnitude of \(J\) is quantized so that \(J^2 = \hbar^2 j(j + 1)\), where \(j\) is the total angular momentum quantum number.
quantitykind:TotalAngularMomentumQuantumNumber
URI: http://qudt.org/vocab/quantitykind/TotalAngularMomentumQuantumNumber
The "Total Angular Quantum Number" describes the magnitude of total angular momentum \(J\), where \(j\) refers to a specific particle and \(J\) is used for the whole system.
quantitykind:TotalAtomicStoppingPower
URI: http://qudt.org/vocab/quantitykind/TotalAtomicStoppingPower
quantitykind:TotalCrossSection
URI: http://qudt.org/vocab/quantitykind/TotalCrossSection
quantitykind:TotalCurrentDensity
URI: http://qudt.org/vocab/quantitykind/TotalCurrentDensity
quantitykind:TotalIonization
URI: http://qudt.org/vocab/quantitykind/TotalIonization
"Total Ionization" by a particle, total mean charge, divided by the elementary charge, \(e\), of all positive ions produced by an ionizing charged particle along its entire path and along the paths of any secondary charged particles.
quantitykind:TotalLinearStoppingPower
URI: http://qudt.org/vocab/quantitykind/TotalLinearStoppingPower
quantitykind:TotalMassStoppingPower
URI: http://qudt.org/vocab/quantitykind/TotalMassStoppingPower
quantitykind:TotalPressure
URI: http://qudt.org/vocab/quantitykind/TotalPressure
The total pressure is the sum of the dynamic and static pressures, that is \(P_0 = P + q\).
quantitykind:TouchThresholds
URI: http://qudt.org/vocab/quantitykind/TouchThresholds
quantitykind:TransmittanceDensity
URI: http://qudt.org/vocab/quantitykind/TransmittanceDensity
quantitykind:TrueExhaustVelocity
URI: http://qudt.org/vocab/quantitykind/TrueExhaustVelocity
quantitykind:UniversalGasConstant
URI: http://qudt.org/vocab/quantitykind/UniversalGasConstant
quantitykind:UpperCriticalMagneticFluxDensity
URI: http://qudt.org/vocab/quantitykind/UpperCriticalMagneticFluxDensity
quantitykind:VehicleVelocity
URI: http://qudt.org/vocab/quantitykind/VehicleVelocity
quantitykind:VentilationRatePerFloorArea
URI: http://qudt.org/vocab/quantitykind/VentilationRatePerFloorArea
quantitykind:VerticalVelocity
URI: http://qudt.org/vocab/quantitykind/VerticalVelocity
quantitykind:VisibleRadiantEnergy
URI: http://qudt.org/vocab/quantitykind/VisibleRadiantEnergy
quantitykind:VisionThreshods
URI: http://qudt.org/vocab/quantitykind/VisionThreshods
quantitykind:Voltage
URI: http://qudt.org/vocab/quantitykind/Voltage
\(\textit{Voltage}\), also referred to as \(\textit{Electric Tension}\), is the difference between electrical potentials of two points. For an electric field within a medium, \(U_{ab} = - \int_{r_a}^{r_b} E . {dr}\), where \(E\) is electric field strength. For an irrotational electric field, the voltage is independent of the path between the two points \(a\) and \(b\).
quantitykind:VoltagePercentage
URI: http://qudt.org/vocab/quantitykind/VoltagePercentage
quantitykind:VolumePerUnitTime
URI: http://qudt.org/vocab/quantitykind/VolumePerUnitTime
quantitykind:VolumeStrain
URI: http://qudt.org/vocab/quantitykind/VolumeStrain
Volume, or volumetric, Strain, or dilatation (the relative variation of the volume) is the trace of the tensor \(\vartheta\).
quantitykind:VolumeThermalExpansion
URI: http://qudt.org/vocab/quantitykind/VolumeThermalExpansion
quantitykind:VolumetricHeatCapacity
URI: http://qudt.org/vocab/quantitykind/VolumetricHeatCapacity
\(\textit{Volumetric Heat Capacity (VHC)}\), also termed \(\textit{volume-specific heat capacity}\), describes the ability of a given volume of a substance to store internal energy while undergoing a given temperature change, but without undergoing a phase transition. It is different from specific heat capacity in that the VHC is a \(\textit{per unit volume}\) measure of the relationship between thermal energy and temperature of a material, while the specific heat is a \(\textit{per unit mass}\) measure (or occasionally per molar quantity of the material).
quantitykind:VolumicElectromagneticEnergy
URI: http://qudt.org/vocab/quantitykind/VolumicElectromagneticEnergy
\(\textit{Volumic Electromagnetic Energy}\), also known as the \(\textit{Electromagnetic Energy Density}\), is the energy associated with an electromagnetic field, per unit volume of the field.
quantitykind:WarmReceptorThreshold
URI: http://qudt.org/vocab/quantitykind/WarmReceptorThreshold
quantitykind:WaterHorsepower
URI: http://qudt.org/vocab/quantitykind/WaterHorsepower
No pump can convert all of its mechanical power into water power. Mechanical power is lost in the pumping process due to friction losses and other physical losses. It is because of these losses that the horsepower going into the pump has to be greater than the water horsepower leaving the pump. The efficiency of any given pump is defined as the ratio of the water horsepower out of the pump compared to the mechanical horsepower into the pump.
quantitykind:Wavelength
URI: http://qudt.org/vocab/quantitykind/Wavelength
For a monochromatic wave, "wavelength" is the distance between two successive points in a direction perpendicular to the wavefront where at a given instant the phase differs by \(2\pi\). The wavelength of a sinusoidal wave is the spatial period of the wave—the distance over which the wave's shape repeats. The SI unit of wavelength is the meter.
quantitykind:WebTimeAveragePressure
URI: http://qudt.org/vocab/quantitykind/WebTimeAveragePressure
quantitykind:WebTimeAverageThrust
URI: http://qudt.org/vocab/quantitykind/WebTimeAverageThrust
Web Time Avg Thrust (Mlbf)
quantitykind:Work
URI: http://qudt.org/vocab/quantitykind/Work
The net work is equal to the change in kinetic energy. This relationship is called the work-energy theorem: \(Wnet = K. E._f − K. E._o \), where \(K. E._f\) is the final kinetic energy and \(K. E._o\) is the original kinetic energy. Potential energy, also referred to as stored energy, is the ability of a system to do work due to its position or internal structure. Change in potential energy is equal to work. The potential energy equations can also be derived from the integral form of work, \(\Delta P. E. = W = \int F \cdot dx\).
vaem:GMD_QUDT-QUANTITY-KINDS-ALL
URI: http://www.linkedmodel.org/schema/vaem#GMD_QUDT-QUANTITY-KINDS-ALL
Provides the set of all quantity kinds.